首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The detection system is a key part of any imaging station. Here the performance of the novel sCMOS‐based detection system installed at the ID17 biomedical beamline of the European Synchrotron Radiation Facility and dedicated to high‐resolution computed‐tomography imaging is analysed. The system consists of an X‐ray–visible‐light converter, a visible‐light optics and a PCO.Edge5.5 sCMOS detector. Measurements of the optical characteristics, the linearity of the system, the detection lag, the modulation transfer function, the normalized power spectrum, the detective quantum efficiency and the photon transfer curve are presented and discussed. The study was carried out at two different X‐ray energies (35 and 50 keV) using both 2× and 1× optical magnification systems. The final pixel size resulted in 3.1 and 6.2 µm, respectively. The measured characteristic parameters of the PCO.Edge5.5 are in good agreement with the manufacturer specifications. Fast imaging can be achieved using this detection system, but at the price of unavoidable losses in terms of image quality. The way in which the X‐ray beam inhomogeneity limited some of the performances of the system is also discussed.  相似文献   

2.
A practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19‐ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower‐ and higher‐energy harmonic contamination. A Pd‐coated mirror and Al attenuators acted as effective low‐ and high‐bandpass filters. The resulting flux at 30 keV, although significantly lower than with X‐ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.  相似文献   

3.
4.
We demonstrate the use of a light‐emitting diode (LED) based experimental setup for collecting polarization‐resolved Raman spectra with good spectral resolution. The combination of a commercial red LED (630 nm), a 1‐nm bandwidth laser‐line filter, and a polarizing prism is used as a light source. Polarization‐resolved spectra in dimethyl sulfoxide are recorded and compared with the corresponding laser‐Raman spectra. The LED‐excited spectra exhibit a resolution slightly lower than those in the laser case but still close to the resolution of the spectrometer. All relevant spectral features of dimethyl sulfoxide including the symmetric and antisymmetric stretching modes of the CSC moiety are resolved with the experimental setup providing a spectral resolution of approximately 20 cm−1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A dedicated high‐resolution high‐throughput X‐ray powder diffraction beamline has been constructed at the Advanced Photon Source (APS). In order to achieve the goals of both high resolution and high throughput in a powder instrument, a multi‐analyzer detector system is required. The design and performance of the 12‐analyzer detector system installed on the powder diffractometer at the 11‐BM beamline of APS are presented.  相似文献   

6.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

8.
The solvatochromism of β‐carotene confirms its high sensitivity not only to the polarizability of the medium, but is also contaminated by additional solute/solvent interactions due to its dipolarity and acidity, as well as to changes in its molecular structure in some solvents. A thermochromic analysis of β‐carotene dissolved in 2‐methylbutane and 1‐chlorobutane (ClB) revealed the influence of the solvent dipolarity on its UV/Vis‐spectroscopy behavior in these solvents. Applying Abe's method to the solvent‐induced shift of the first Vis absorption band of β‐carotene in ClB revealed that the electronic excitation substantially increases its polarizability and its dipole moment. Other experimental evidence also confirms that β‐carotene is not a suitable polarizability probe of the medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A confocal micro‐X‐ray fluorescence (micro‐XRF) instrument equipped with a vacuum chamber was newly developed. The instrument is operated under a vacuum condition to reduce the absorption of XRF in the atmosphere. Thin metal layers were developed to evaluate the confocal volume, corresponding to depth resolution. A set of thin metal layers (Al, Ti, Cr, Fe, Ni, Cu, Zr, Mo, and Au) was prepared by a magnetron sputtering technique. The depth resolutions of the new instrument were varied from 56.0 to 10.9 µm for an energy range from 1.4 to 17.4 keV, respectively. The lower limit of detection (LLD) was estimated by comparison with a glass standard reference material NIST SRM 621). The LLDs obtained by a conventional micro‐XRF were compared with the LLDs obtained by a confocal micro‐XRF instrument. The LLDs were improved in the measurement under confocal configuration because of the reduction of background intensity. Finally, layered materials related to forensic investigation were measured. The confocal micro‐XRF instrument was able to nondestructively obtain the distribution of light elements that cannot be detected by measurement in air. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The developed curved image plate (CIP) is a one‐dimensional detector which simultaneously records high‐resolution X‐ray diffraction (XRD) patterns over a 38.7° 2θ range. In addition, an on‐site reader enables rapid extraction, transfer and storage of X‐ray intensity information in ≤30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X‐ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X‐ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high‐temperature XRD.  相似文献   

11.
We report on the surface‐sensitive grazing emission X‐ray fluorescence technique combined with synchrotron radiation excitation and high‐resolution detection to realize depth‐profile measurements of Al‐implanted Si wafers. The principles of grazing emission measurements as well as the benefits offered by synchrotron sources and wavelength‐dispersive detection setups are presented. It is shown that the depth distribution of implanted ions can be extracted from the dependence of the X‐ray fluorescence intensity on the grazing emission angle with nanometer‐scale precision provided that an analytical function describing the shape of the depth distribution is assumed beforehand. If no a priori assumption is made, except a bell shaped form for the dopant distribution, the profile derived from the measured angular distribution is found to reproduce quite satisfactorily the depth distribution of the implanted ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
L‐series emissions of manganese, iron, and zinc oxides were studied using electron beam excitation and highly brilliant synchrotron radiation excitation. We showed that manganese and iron oxides show different Lβ/Lα intensity ratio because of their oxidation states and excitation electron voltages. On the other hand, we could not get any L‐series emissions from those bulk samples when excited by normal incident high‐energy monochromatic X‐rays, while samples of thin films and samples excited by grazing incident monochromatic X‐rays showed clear emissions. It is suggested that the difference of Lβ/Lα intensity ratio due to the oxidized states mainly concerns with the Coster–Kronig transition ratio of the samples, while self‐absorption effects should also deeply contribute the ratio, considering the experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Treatment of 2,4‐dinitropentane with bromine and sodium methoxide in methanol, affords formation of an ether product, 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane, in 59% yield as a mixture of three diastereomers. This observation has led to a general synthesis of 3‐alkoxy‐2,4‐dibromo‐2,4‐dinitropentanes, obtained in 75‐86% yield from 2,4‐dibromo‐2,4‐dinitropentane as the preferred reactant. 4‐Bromo‐2,4‐dinitro‐2‐pentene has been identified as an intermediate in these reactions. The nitroalkene has been isolated and undergoes conjugate addition with alkoxides to afford the same ether products after brominative work‐up. The nitroalkene undergoes conjugate addition with sodium azide to give 3‐azido‐2,4‐dibromo‐2,4‐dinitropentane in 38% yield as a mixture of two isomers in which the (R*,R*) isomer predominates. Sequential treatment of 2,4‐dibromo‐2,4‐dinitropentane with sodium methoxide followed by sodium iodide and acetic acid gives 3‐methoxy‐2,4‐dinitropentane in 63% yield, the overall product of simple methoxylation of 2,4‐dinitropentane. However, attempted complete debromination of 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane with excess sodium iodide and acetic acid results only in monodebromination to give 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 86% yield. Likewise, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane is formed in 93% yield from the ethoxy analog. A mechanistic rationale is offered for condition‐specific removal of the second Br atom in these reactions. Treatment of 3‐methoxy‐2,4‐dinitropentane with potassium acetate/iodine in dimethyl sulfoxide affords formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide in 30% yield as a single diastereomer. Conversion of 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 15% yield to 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide is also possible by using potassium acetate in dimethyl sulfoxide. The mechanistic pathways for formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide apparently involve unstable 3‐methoxy‐1,2‐dimethyl‐1,2‐dinitrocyclopropane as the common intermediate. Similarly, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane affords 4,5‐dihydro‐3‐ethoxy‐3,4‐dimethyl‐4‐nitroisoxazole 2‐oxide in 13% yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0–3 according to a clinical scoring for the severity of arthritis. An X‐ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge‐coupled‐device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7 µm. These high‐resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X‐ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings.  相似文献   

17.
The development of medium‐energy inelastic X‐ray scattering optics with meV and sub‐meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back‐reflection angular‐dispersion monochromator or analyzer, is analyzed. The results show that the multiple‐beam diffraction effect together with transmission‐induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four‐bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV‐ to sub‐meV‐resolution inelastic X‐ray scattering spectroscopy.  相似文献   

18.
We present a review of photoexcited quasiparticle dynamics of cuprate and pnictide high‐temperature superconductors in regimes (temperature, doping) where different phases such as superconductivity, spin‐density‐wave (SDW) and pseudogap phases coexist or compete with one another. We start with the overdoped cuprate superconductor Y1–xCax Ba2Cu3O7–δ, where the superconducting gap and pseudogap coexist in the superconducting state. In another cuprate Tl2Ba2Ca2Cu3Oy, we ob‐ serve a competition between SDW and superconducting orders deep in the superconducting state. Finally, in the underdoped iron pnictide superconductor (Ba,K)Fe2As2, SDW order forms at 85 K, followed by superconductivity at 28 K. We also find the emergence of a normal‐state order that suppresses SDW at a temperature T * ~ 60 K and argue that this normal‐state order is a precursor to superconductivity. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Inelastic X‐ray scattering (IXS) measurements have been performed on an MgO single crystal in order to evaluate IXS as a methodology for accurate and precise determination of elastic constants and sound velocities. By performing the IXS experiment using a 12‐analyzer array, the complete set of single‐crystal elastic constants of MgO were determined to a precision better than 0.8% (sound velocities to better than 0.2%). The results are consistent with values in the literature. The precision and accuracy of this work, which is significantly better than other published work to date, demonstrates the potential of IXS in determining elastic properties.  相似文献   

20.
Rapid analysis of emission spectra for gold alloys   总被引:2,自引:0,他引:2  
We present the results of quantitative determination of the composition of gold alloys in laser spark emission spectrometry (also known as laser-induced breakdown spectrometry or LIBS), based on the contribution from each chemical element to the integrated intensity of the emission from the alloy. The method makes it possible to make real-time measurements using low-power lasers. We have measured the concentration of gold in alloys containing gold, copper, and silver using our method. We demonstrate the need for preliminary qualitative or semiquantitative measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号