首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

2.
IPANEMA, a research platform devoted to ancient and historical materials (archaeology, cultural heritage, palaeontology and past environments), is currently being set up at the synchrotron facility SOLEIL (Saint‐Aubin, France; SOLEIL opened to users in January 2008). The new platform is open to French, European and international users. The activities of the platform are centred on two main fields: increased support to synchrotron projects on ancient materials and methodological research. The IPANEMA team currently occupies temporary premises at SOLEIL, but the platform comprises construction of a new building that will comply with conservation and environmental standards and of a hard X‐ray imaging beamline today in its conceptual design phase, named PUMA. Since 2008, the team has supported synchrotron works at SOLEIL and at European synchrotron facilities on a range of topics including pigment degradation in paintings, composition of musical instrument varnishes, and provenancing of medieval archaeological ferrous artefacts. Once the platform is fully operational, user support will primarily take place within medium‐term research projects for `hosted' scientists, PhDs and post‐docs. IPANEMA methodological research is focused on advanced two‐dimensional/three‐dimensional imaging and spectroscopy and statistical image analysis, both optimized for ancient materials.  相似文献   

3.
X‐ray tubes have a broad range of applications worldwide, including several techniques for atomic physics, like X‐ray fluorescence, as well as for medical imaging, like computed tomography. The performances of X‐ray imaging detectors have shown to be significantly sensitive to the incident beam spectrum. Therefore, an accurate knowledge of the X‐ray beam becomes necessary for the emission source characterization and the whole imaging process comprehension. Direct measurements and suitable Monte Carlo simulations may be used to establish the X‐ray spectra. Dedicated Monte Carlo simulation routines, based on the PENELOPE code, have been developed to determine the Bremsstrahlung X‐ray spectra generated by conventional X‐ray tubes. The simulated spectra have been validated by comparison with the corresponding experimental data showing an overall good agreement. The incorporation of a suitably designed virtual grid allowed to assess the angular distribution of Bremsstrahlung yield, showing a remarkable anisotropy. In addition, a dedicated program has been developed for virtual imaging, which enables to perform suitable X‐ray absorption contrast images. Also, the developed program includes a user‐friendly graphic interface to allow the upload of required input parameters, which include setup arrangement, beam characteristics, sample properties and image simulation parameters (spatial resolution, tracks per run, etc.). The software includes dedicated subroutines which handle the physical process from X‐ray generation up to detector signal acquisition. The aim of the developed program is to perform virtual imaging by means of absorption contrast and using conventional X‐ray sources, which may be a useful tool for the study the X‐ray imaging techniques in several research fields as well as for educational purposes. The performed comparisons with experimental data have shown good agreement. The obtained results for X‐ray imaging may constitute useful information for the comprehension and improvement of X‐ray image quality, like absorption contrast optimization, detail visualization, definition and detectability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The ESRF synchrotron beamline ID22, dedicated to hard X‐ray microanalysis and consisting of the combination of X‐ray fluorescence, X‐ray absorption spectroscopy, diffraction and 2D/3D X‐ray imaging techniques, is one of the most versatile instruments in hard X‐ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.  相似文献   

5.
The combination of a pn‐junction charge‐coupled device‐based pixel detector with a poly‐capillary X‐ray optics was installed and examined at the Helmholtz‐Zentrum Dresden‐Rossendorf. The set‐up is intended for particle‐induced X‐ray emission imaging to survey the trace elemental composition of flat/polished geological samples. In the standard configuration, a straight X‐ray optics (20 μm capillary diameter) is used to guide the emitted photons from the sample towards the detector with nearly 70 000 pixels. Their dimensions of 48 × 48 μm2 are the main limitation of the lateral resolution. This limitation can be bypassed by applying a dedicated subpixel algorithm to recalculate the footprint of the photon's electron cloud in the detector. The lateral resolution is then mainly determined by the capillary's diameter. Nevertheless, images are still superimposed by the X‐ray optics pattern. The optics' capillaries are grouped in hexagonal bundles resulting in a reduced transmission of X‐rays in the boundary regions. This influence can be largely suppressed by combining a series of short measurements at slightly shifted positions using a precision stage and correcting the image data for this shifting. The use of a subpixel grid for the image reconstruction allows a further increase of the spatial resolution. This approach of image‐stacking and multiframe super‐resolution in combination with the subpixel correction algorithm is presented and illustrated with experimental data. Additionally, a flat‐field correction is shown to remove the remaining imaging inhomogeneity caused by non‐uniform X‐ray transmission. The described techniques can be used for all X‐ray spectrometry methods using an X‐ray camera to obtain high‐quality elemental images.  相似文献   

6.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

7.
8.
The application of non‐destructive imaging to characterizing samples has become more important as the costs of samples increase. Imaging a sample via X‐ray techniques is preferable when altering or even touching the sample affects its properties, or when the sample is fielded after characterization. Two laboratory‐based X‐ray techniques used at Los Alamos include micro X‐ray computed tomography (MXCT) and confocal micro X‐ray fluorescence (confocal MXRF). Both methods create a 3D rendering of the sample non‐destructively. MXCT produces a high‐resolution (sub‐µm voxel) rendering of the sample based upon X‐ray absorption; the resulting model is a function of density and does not contain any elemental information. Confocal MXRF produces an elementally specific 3D rendering of the sample, but at a lower (30 × 30 × 65 µm) resolution. By combining data from these two techniques, scientists provided a more comprehensive method of analysis. We will describe a MATLAB routine written to render each of these data sets individually and/or within the same coordinate system. This approach is shown in the analysis of two samples: an integrated circuit surface mounted resistor and a machined piece of polystyrene foam. The samples chosen provide an opportunity to compare and contrast the two X‐ray techniques, identify their weaknesses and show how they are used in a complementary fashion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Analyzer‐based imaging has improved tissue X‐ray imaging beyond what conventional radiography was able to achieve. The extent of the improvement is dependent on the crystal reflection used in the monochromator and analyzer combination, the imaging photon energy, the geometry of the sample and the imaging detector. These many factors determine the ability of the system to distinguish between various bone tissues or soft tissues with a specified statistical certainty between pixels in a counting detector before any image processing. The following discussion will detail changes in the required number of imaging photons and the resulting surface absorbed dose when the imaging variables are altered. The process whereby the optimal imaging parameters to deliver the minimum surface absorbed dose to a sample while obtaining a desired statistical certainty between sample materials for an arbitrary analyzer‐based imaging system will be described. Two‐component samples consisting of bone and soft tissue are discussed as an imaging test case. The two‐component approach will then be generalized for a multiple‐component sample.  相似文献   

10.
Recent developments in X‐ray spectroscopy in the last decade are reviewed. A specific emphasis is placed on displaying the strong natural connection between X‐ray spectroscopy and materials science. Brief explanations of several X‐ray spectroscopic methods are given. X‐ray spectroscopic instruments such as table‐top X‐ray sources are discussed in detail, whereas those employing synchrotron and other sources are briefly addressed. The spectroscopic methods and results from materials investigations are reviewed according to their positions in a 3D parameter space of time, length, and energy. New experimental measurements on atoms, molecules, nanomaterials, and bulk materials that include insulators, semiconductors, metals and magnetic materials using both static and time‐resolved methods are reviewed.  相似文献   

11.
《X射线光谱测定》2004,33(6):402-406
The employment of synchrotron radiation for refraction topography of materials has considerable advantages over standard x‐ray sources. The much higher beam intensity and the parallel and monochromatic radiation provide faster measurements and better angular and spatial resolution. X‐ray refraction techniques image the inner surface and interface concentration of micro‐structured materials. This effect of x‐ray optics is additional to small‐angle scattering by diffraction, when the scattering objects reach micrometre dimensions. We have developed x‐ray refraction techniques within the last decade in order to meet the growing demands for improved non‐destructive characterization of high‐performance composites, ceramics and other low‐density materials. Sub‐micron particle dimensions, the pore size of ceramics, the crack density distribution and single fibre debonding within damaged composites can be measured and visualized by computer‐generated interface topographs. For this purpose investigations are now being performed at the new hard x‐ray beamline of the Federal Institute for Materials Research and Testing (BAM) at BESSY, Berlin. This BAMline provides monochromatic radiation of photon energies from 5 to 60 keV from a double multilayer and/or a double‐crystal monochromator. A separate instrument is dedicated to the further development and application of synchrotron radiation refraction (SRR) topography. Different from conventional small‐angle scattering cameras with collimating slits and pinholes, scattering angles down to a few seconds of arc are selected by a single‐crystal analyser, similar to a Bonse–Hart diffractometer. A 20 µm spatial resolution of the scattering micro‐structures is achieved by a CCD camera with a fluorescent converter. First SRR topographs of aircraft composites [carbon fibre‐reinforced plastics (CFRP), carbon fibre‐reinforced ceramics (C/C), metal matrix ceramics (MMC)] will be reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The spatial resolution of hyperspectral image is often low due to the limitation of the imaging spectrometer. Fusing the original hyperspectral image with high-spatial-resolution panchromatic image is an effective approach to enhance the resolution of hyperspectral image. However, it is hard to preserve the spectral information at the same time of enhancing the resolution by the traditional fusion methods. In this paper, we proposed a fusion method based on the spectral unmixing model called sparse constraint nonnegative matrix factorization (SCNMF). This method has a superior balance of the spectral preservation and the spatial enhancement over some traditional fusion methods. In addition, the added sparse prior and NMF based unmixing model make the fusion more stable and physically reasonable. This method first decomposes the hyperspectral image into an endmember-matrix and an abundance-matrix, then sharpens the abundance-matrix with the panchromatic image, finally obtains the fused image by solving the spectral constraint optimization problem. The experiments on both synthetic and real data show the effectiveness of the proposed method.  相似文献   

13.
The next generation of X‐ray sources will feature highly brilliant X‐ray beams that will enable the imaging of local nanoscale structures with unprecedented resolution. A general formalism to predict the achievable spatial resolution in coherent diffractive imaging, based solely on diffracted intensities, is provided. The coherent dose necessary to reach atomic resolution depends significantly on the atomic scale structure, where disordered or amorphous materials require roughly three orders of magnitude lower dose compared with the expected scaling of uniform density materials. Additionally, dose reduction for crystalline materials are predicted at certain resolutions based only on their unit‐cell dimensions and structure factors.  相似文献   

14.
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results.  相似文献   

15.
The first monochromatic X‐ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X‐ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point‐spread function for the X‐ray imaging system and harmonic contamination of the X‐ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X‐ray spectrum prior to monochromatization, allowance for the response of the double‐crystal Si monochromator used (via X‐ray dynamical theory), as well as a thorough assessment of the role of X‐ray phase‐contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point‐spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X‐ray tomography data, across a wide range of disciplines, including materials and life sciences.  相似文献   

16.
X‐ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X‐ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X‐ray imaging. This study combines an image intensifier with a high‐speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro‐channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X‐ray PIV system was applied to high‐speed blood flows in a tube, and the velocity field information was successfully obtained. The time‐resolved X‐ray PIV system can be employed to investigate blood flows at beamlines with insufficient X‐ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.  相似文献   

17.
A wide range of high‐performance X‐ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non‐destructive' because possible beam‐induced electronic or structural changes may occur during X‐ray irradiation. As these changes may be at least partially reversible, an in situ technique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set‐up with a synchrotron hard X‐ray interface scattering instrument for the in situ detection of work function variations resulting from X‐ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room‐temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X‐ray beam. This demonstrates the usefulness of a SKP for in situ monitoring of surface/interface potentials during X‐ray materials characterization experiments.  相似文献   

18.
The developed curved image plate (CIP) is a one‐dimensional detector which simultaneously records high‐resolution X‐ray diffraction (XRD) patterns over a 38.7° 2θ range. In addition, an on‐site reader enables rapid extraction, transfer and storage of X‐ray intensity information in ≤30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X‐ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X‐ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high‐temperature XRD.  相似文献   

19.
X‐ray microscopy is capable of imaging particles in the nanometer size range directly with sub‐micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X‐ray microscopy: the transmission X‐ray microscope and the scanning transmission X‐ray microscope; their set‐ups are explained in this paper. While the former takes high‐resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X‐ray microscope. Images are shown from a cryo‐tomography experiment based on X‐ray microscopy images to obtain information about the three‐dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X‐ray microscope to combine morphology and chemistry within a soil sample is shown. X‐ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X‐ray energies above 1 keV.  相似文献   

20.
The Pixium 4700 detector represents a significant step forward in detector technology for high‐energy X‐ray diffraction. The detector design is based on digital flat‐panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 × 2480 pixels with a pixel size of 154 µm × 154 µm, and thus it covers an effective area of 294 mm × 379 mm. Designed for medical imaging, the detector has good efficiency at high X‐ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high‐energy X‐ray diffraction are presented. Quantitative comparisons with a widespread high‐energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point‐spread function and distortion‐free image, allows for the acquisition of high‐quality diffraction data at high X‐ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号