首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The lifetimes of the lowest 32?and52? levels in 103Rh, 107Ag and 109Ag have been measured with the Doppler-shift version of the recoil-distance technique. A beam of 35Cl ions of energy 64 MeV was used to Coulomb excite the target nuclei and eject them from the target. The following lifetimes were obtained: τ(103Rh, 32?, 295 keV) = 14.5 ± 1.5 ps, ρ103Rh, 52?, 357 keV) = 112 ± 10 ps; τ(107Ag, 32?, 325 keV) = 7.2 ± 1.3 ps, τ(107Ag, 52?, 423 keV) = 43 ± 3 ps; τ(109Ag, 32?, 311 keV) = 8.5 ± 1.0 ps, τ(109Ag, 52?, 415 keV) = 50 ± 3 ps. Of t correction factors taken into account the perturbation of the γ-ray angular distribution by the magnetic hyperfine interaction during recoil through vacuum was found to give the largest correction to the measured lifetimes. These lifetimes lead to reduced transition probabilities Bd(E2) for the silver nuclei in reasonable agreement with the predictions of the core-excitation theory.  相似文献   

2.
The β+ decay of 45V (Jπ, T=72?, 12) has been observed. The half-life was found to be 539 ± 18 ms; in addition to the superallowed transition to the mirror state (45Ti ground state), it exhibits a (4.3 ± 1.5)% allowed branch to the 52? state at 40.1 keV in 45Ti. Decay data for the complete f72 shell series of mirror nuclei are presented.  相似文献   

3.
High resolution spectra of the ν3 band of methane, 12CH4, were recorded by using a “third generation vacuum Fourier interferometer”; a large pressure range (from 0.009 to 10 Torr) with a sample path fixed at eight meters was used, enabling observation of transitions with intensity ratios as low as 110 000. More than 350 forbidden transitions of the ν3 band, including about 125 transitions of the Q+ branch, were unambiguously identified. Of the 277 transitions retained for computations, one-hundred have 11 ≤ J ≤ 16. From combination difference relations using pairs of transitions having the same upper state energy level (forbidden-allowed and forbidden-forbidden pairs were used), 276 independent differences between ground state energy levels could be determined with uncertainties of about 0.001 cm?1.These data yielded the following values for the ground state structure constants of 12CH4 along with their standard deviations (in cm?1): βohc=5.2410356±0.0000096, γohc=(?1±0.00074) 10?4, πohc=(5.78±0.18) 10?9, ?ohc=(?1.4485±0.0023) 10?6, ?ohc=(1.768±0.126) 10?10, ξohc=(?1.602±0.067) 10?11, Thus, for the first time, the scalar constant π0 has been evaluated and ir values have been obtained for the two tetrahedral constants ?0 and ξ0; furthermore, these values are in very good agreement with the ones recently determined from radiofrequency data, i.e., in cm?1: ?ohc=(?1.45061±0.00014) 10?6, ?ohc=(1.7634±0.0068) 10?10, ξohc=(?1.5432±0.0040) 10?11 From these values, the 276 differences can be reproduced with an overall rms deviation equal to 0.0009 cm?1.Finally, the ground state energies of 12CH4 have been calculated for J ≤ 16.  相似文献   

4.
Neutron capture and transmission measurements have been carried out on the separated isotopes of 147Sm (98.34 %) and 149Sm (97.72 %) at the 55 m time-of-flight station of the Japan Atomic Energy Research Institute electron linear accelerator. Resonance energies and neutron widths for a large number of resolved resonances were determined up to 2 keV for 147Sm and 520 eV for 149Sm. Radiation widths for 5 resonances in 147Sm + n and 7 resonances in 149Sm + n were derived. The s-wave strength functions, average level spacings and average radiation widths were obtained to be: 104S0 = 4.8 ± 0.5, D = 5.7 ± 0.5 eV and Γγ = 69 ± 2 meV for147Sm; a 104S0 = 4.6 ± 0.6, D = 2.2 ± 0.2 eV and Γγ = 62 ± 2 meV for149Sm. The average capture cr sections were deduced from 3.3 to 300 keV with an estimated accuracy of 5 to 15 %. The measured capture cross sections for 149Sm are largely different from the evaluated data, which are obtained based on the statistical model calculation. Possible reasons for this disagreement are discussed.  相似文献   

5.
The (n, 2n) cross sections at neutron energies between 14.9 and 17.0 MeV have been measured for 85Rb, 87Rb and 144Sm by the mixed-powder method and γ-ray detection by a Ge(Li) spectrometer. Using the 27Al(n, α)24Na reaction for monitoring, the measured cross sections were (in mb): 85Rb(n, 2n)84(m+g)Rb, 1125±141, 1177±148 and 1235±162 at 15.0±0.4 MeV, 16.2±0.7 MeV and 17.0±0.9 MeV, respectively; 85Rb(n, 2n)84mRb, 662±83, 688±87 and 765±99 at 15.0±0.4 MeV, 16.2±0.7 MeV and 17.0±0.9 MeV, respectively; 87Rb(n, 2n)86(m+g)Rb, 1336±168 and 1301±162 at 15.0±0.4 MeV and 16.2±0.7 MeV respectively; 144Sm(n, 2n)143(m+g)Sm, 1202±130, 1300±141, 1516±179 and 1514±179 at 14.9±0.3 MeV, 15.5±0.3 MeV, 16.4±0.5 MeV and 16.7±0.2 MeV, respectively. The measured values are compared with the statistical model calculations of Pearlstein.  相似文献   

6.
From the angular distributions of γ-rays emitted by oriented 129gTe and 129mTe nuclei implanted in iron by isotope separator, unique spin assignments could be made for the excited states of 129I at 487.4 keV (52+), 696.0 keV (112+), 729.6 keV (92+), 768.9 keV (72+), 1050.4 keV (72+) and 1111.8 keV (52+). In addition, E2/M1 amplitude ratios for the following 129I γ-rays (energies are in keV) are derived: δ(459.6) = ?(0.076+0.037?0.148); δ(487.4) = 0.50+0.17?0.10 or δ? = 0.35+0.15?0.09; δ(556.7) = 0.06±0.02 or δ? = ?(0.10±0.02); δ(624.4) = 0.10±0.26 or δ? > 0.4; the 696.0 keV γ-ray is pure E2; δ(729.6) = ?(0.34±0.06) or δ?1 = 0.55±0.05; δ(741.1) = ?(0.27±0.10) or δ?1 = ?(0.43±0.12); δ(817.2) = 0.46±0.04 or δ?1 =0.20±0.03 if Iπ (845 keV) = 72+; δ(1022.6) = ?(0.02 ±0.02) or δ?1 = ?(0.23±0.02); δ(1084) = 0.56 +0.04?0.14; δ(1111.8) = 0.06±0.05 or δ?1 = ?(0.08±0.05). The anisotropy of the 531.8 keV γ-ray excludes 12+ as a possible spin assignment for the 559.6 keV level, so that no 12+ level is fed in the decay from 129Te. Anisotropies for the 209, 250.7, 278.4 and 281.1 keV γ-rays are also measured. Comparison of the level scheme is made with theoretical predictions from both the pairing-plus-quadrupole model and the intermediate coupling unified model.  相似文献   

7.
The time-differential perturbed angular distribution method was used to determine the g-factors of the (f72)3192? states in 43Ti and 43Sc. The results for the mass 43 mirror pair are: 43Ti: g = 0.760 ± 0.001, T12, = 560 ± 6 ns, 43Sc: g = 0.3286± 0.0007, T12 = 473 ± 5 ns. Considering in addition the magnetic moments in A = 41 and 42, it is suggested that the deformed states considered by Johnstone and Castel and by Erikson are responsible for the observed large deviations from the Schmidt values.  相似文献   

8.
The α-decay properties of very short-lived N = 128 isotones, 216Ra, 217Ac and 218Th, were investigated by the pulsed-beam method. Alpha emitters of interest were produced in the bombardment of 208Pb or 209Bi with 65–96 MeV 12C or 14N ions and α-decays were measured between natural beam bursts of the cyclotron. The results obtained are = 9.349±0.008 MeVand t12 = 182±10 ns for216Ra, 9.650±0.010 MeV and 111±7 ns for217Ac, 9.665±0.010 MeV and 96±7 ns for218Th. The experimental reduced α-widths of N = 128 isotones from 212Po to 218Th are shown to agree well with the simple shell model calculation.  相似文献   

9.
Yrast levels in 40K and 40Ar have been investigated with the 26Mg(16O, pnγ)40K and 26Mg(16O, 2pγ)40Ar reactions at a beam energy of 34 MeV. Gamma-ray angular distribution and γ-γ coincidence measurements have been performed with a high-resolution large volume Ge(Li)-NaI(Tl) Compton-suppression spectrometer. Gamma-ray linear polarizations have been measured with a three-crystal Ge(Li) Compton polarimeter. The 40K decay scheme involves new high-spin levels at Etx = 4365.6±0.3, 4875.6±0.4 and 6227.0±0.5 keV with lifetime limits of < 1, < 1 and < 2ps, respectively. Unambiguous spin-parity assignments of Jπ = 5?, 6 +, 8+, 9+and (8, 10)? to the 40K levels at Ex = 0.89, 2.88, 4.37, 4.88 and 6.23 and of Jπ = 4+and 6+to the40Ar levels at Ex = 2.89 and 3.46 MeV, respectively, have been obtained. Branching ratios and multipole mixing ratios are reported.  相似文献   

10.
Lifetimes of low-lying states in 19F were measured using the Doppler-shift attenuation method through the 15N(α, γ)19F reaction. Values of τm = 3700 ± 700 fs (1.35 MeV), 140 ± 15 (1.46), 19 ± 7 (4.00) and 63 ± 19 (4.03) were obtained for the lowest 52?, 32?, 72? and 92? members, respectively, of the Kπ = 12? rotational band and 5 ± 3 fs (1.55 MeV) and 370 ± 25 (2.78) for the 32+ and 92+ members of the Kπ = 12+ ground-state band. For the Doppler-shift attenuation analysis correction factors of the nuclear and electronic stopping powers were determined by measuring the Doppler-shift attenuation and γ-ray line shape of the 2.78 → 0.20 MeV transition and range values of 100, 200. 300 and 370 keV 19F nuclei in tantalum. All calculations were done with Monte Carlo methods. The transition strengths are discussed in terms of different theoretical predictions.  相似文献   

11.
Half-lives of O2+ states in 206Pb and 208Po, 770±40 and 465±20ps, respectively, are determined using direct-timing techniques. The corresponding monopole strength parameter values,ρ(206Pb) = 0.034±0.002 and ρ(208Po)=0.030?0.037, indicate that the O2+ states in both nuclei are mainly of similar two-neutron-hole character.  相似文献   

12.
Levels in 51Cr, 53Cr, 53Mn and 53Fe were excited via (α, n) or (α, p) reactions. Using the recoil-distance method, mean-lives (in ps) have been obtained for excited states (keV) in the residual nuclei: 51Cr(2256) = 66±2, 53Cr(1536) = 21.5±3.5, 53Cr(2173) = 6.7±3.1, 53Mn(2564) = 20+8?6and53Fe(1424) = 4.0±1.0. Reduced transition probabilities calculated from these values are compared with the available theoretical values.  相似文献   

13.
The reorientation effect in Coulomb excitation has been used to measure the following static quadrupole moments: Q2 + (32S) = ?0.066 ± 0.017 b, Q2 + (34S) = 0.026 ± 0.023 b, Q2 + (204Pb) = 0.19 ± 0.14 b. Interference effects from higher excited states have been included in the analysis, with the signs of the E2 matrix elements taken from an anharmonic model. The value obtained for Q2 + (32S) is in disagreement with two previous measurements. We attribute the discrepancy to the smaller internucleon separation distances involved in the previous experiments, which can cause deviations from Coulomb excitation cross sections. The other quadrupole moments have not been measured previously. The B (E2: 0+ → 2+) measured were: 0.0305 ± 0.0016 e2 · b2(32S), 0.025 ± 0.004 e2 · b2(34S), and 0.166 ± 0.009 e2 · b2(204Pb). From the angular distribution of the de-excitation γ-rays of the Pb nuclei following recoil into vacuum, we have determined the following g-factors: ¦g2 + (204Pb)¦ < 0.08 (two standard deviations), ¦g2 + (206Pb)¦ = 0.07+ 0.07? 0.03. Our value of g2 + (206Pb) is in agreement with a previous measurement.  相似文献   

14.
The gyromagnetic ratios of the lowest excited 32?and52? states in 107, 109Ag were simultaneously measured relative to that of the 21+ level in 108Pd. The thin-foil, perturbed γ-ray angular distribution technique was employed utilizing the transient hyperfine magnetic field present at the nuclei of these ions as they swiftly recoiled through a thin magnetized Co foil. The states of interest were Coulomb-excited using beams of 100 MeV 32S ions. The present measurements yielded g(32?; 107Ag) = +0.63 ± 0.09, g(52?; 107Ag) = + 0.37±0.06, g(32?; 109Ag) = +0.77 ± 0.10, and g(52?; 109Ag) = +0.36 ± 0.05. These findings are compared with weak-coupling and other appropriate model calculations.  相似文献   

15.
High spin states of 57Co have been studied via prompt γ-ray spectroscopy in the reactions 48Ti(12C, p2n) and 54Fe(α, p) at 26–48 MeV and 12–24 MeV, respectively. The energies and decay modes of these levels were determined from the analysis of γ-ray singles and γ-γ coincidence spectra, excitation functions, angular distributions and correlations. The relevant lifetimes were measured by the Doppler-shift attenuation method. The new levels established in this work are at 4037, 4814 and 5918 keV with the most probable Jπ assignment of 152?, if 172? and 192?, respectively. The previously known level at 2524 keV was assigned to have Jπ = 132?. These together with the known 92?(1224 keV) and 112?(1690 keV) levels constitute the yrast states of 57Co. The measured lifetimes of the above six levels are (in order of increasing energies) 0.085±0.030, 0.32±0.10, 0.16±0.06, 0.10?0.07+0.06, 1.5?0.54 and 0.17?0.07+0.08 ps, respectively. Comparisons with some theoretical calculations are presented.  相似文献   

16.
The quadrupole effect in the NMR of 17F(Iπ = 52+, T12 = 66 s) in a MgF2 single crystal has been investigated. Production and implantation of polarized 17F through the 16O(d, n) reaction and the resulting asymmetric β-decay were utilized. The quadrupole coupling constant is determined to be |eqQ/h| = 8.41 ± 0.24 MHz with η = 0.32 ± 0.02 at room temperature. No appreciable temperature dependence of eqQ is found from 77 K up to 770 K. Using previously known results, the following ratios of the quadrupole moments are obtained; |Q(17F, 52+)| : |Q(18F1, 5+)| : |Q(19F1, 52+| : |Q(20F, 2+)|= 1 : (1.33 ± 0.08) : (1.24 ± 0.06) : (0.69 ± 0.02). The additivity relation of Q between 17F, 17O, and 18F1 is discussed.  相似文献   

17.
Accurate lifetimes have been measured for low-lying levels in 22Ne, 28Si and 31P by bombarding 4He implanted targets with beams of 19F and 28Si ions. Mean lifetimes determined by fitting Doppler-broadened γ-ray lineshapes were (Exin MeV, τ in ps): 22Ne (1.275, 5.15 ± 0.31; 3.357, 0.324 ± 0.009), 28Si (1.779, 0.667 ± 0.035), 31P (1.266, 0.70 ± 0.07; 2.234, 0.363 ± 0.024). The lifetime values for the 3.357 MeV level in 22Ne and the 2.234 MeV level in 31P are used to calibrate low velocity DSAM lifetime data for these two levels and to obtain scaling factors to theoretical electronic stopping powers for Ne and P ions.  相似文献   

18.
Energy levels of 85Rb and 87Rb have been studied via de-excitation γ-rays following Coulomb excitation with 35Cl ions. In addition to the known negative-parity states at 151.2 keV and 868.2 keV in 85Rb, two states at 281.0 keV and 731.8 keV have been found with fourγ-ray transitions of 129.8, 281.0, 450.8 and 731.8 keV. Only one Coulomb excited state at 402.6 keV in 87Rb has been observed. The B(E2↑) values (in units e2 · b2) have been determined as 0.0035±0.0004 (151.2 keV), 0.0016±0.0002 (281.0 keV), 0.0101 ±0.0010 (731.8 keV), and 0.036±0.004 (868.2 keV) for the states in 85Rb, and as 0.0054±0.0006 (402.6 keV) for the state in 87Rb. The mean lifetimes of the 731.8 keV and 868.2 keV states have been measured by the Doppler shift attenuation method as 6.4±0.7 psec and 4.2±0.5 psec respectively. Angular distribution measurements allow unique spin and parity assignments of 12? and 32? to the 281.0 keV and 731.8 keV levels respectively. The spin and parity of the 868.2 keV level has been restricted to 52? or 72?.  相似文献   

19.
The quadrupole interaction frequencies ω0 = 3eQ1Vzz41(21-1) h? in the 5? state of 118Sn have been measured by time differential perturbed angular correlation technique in Sn, Sb and (95% Sn+5% Sb) environments. The ω0 for 116Sn was determined in Sn environment only. With the help of the known electric field gradient 1) of Sn in a Sn lattice the quadrupole moments have been deduced as Q(5?, 118Sn) = ±0.10(4) b and Q(5?, 116Sn) = ±0.165(60) b. These values together with the known2) quadrupole moment of the analogous 5? state in 120Sn are interpreted in terms of the pure single-particle model. The data exhibit the expected strong systematic variation of QI with the number of particles in the h112. subshell which is being filled with 1, 3 and 5 neutrons in 116Sn, 118Sn, and 120Sn, respectively.  相似文献   

20.
The static quadrupole moment of the first excited Jπ = 2+ state in 24Mg and the reduced electric quadrupole transition probability between this state and the ground state were measured via projectile Coulomb excitation. The quadrupole moment was deduced from the shapes of γ-ray angular distributions. The result is Q(24Mg, 2+) = ?0.27±0.05 b. The transition strength was deduced from yield measurements and by comparison with the yields of target γ-rays, The result is B(E2; 0+ → 2+, 24Mg) = 0.044±0.003 e2 · b2. The experimental measurements are compared with theoretical predictions and previous measurements and a detailed discussion is given of corrections to this type of reorientation experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号