首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds [(η6p‐cymene)RuCl2(4‐nitroaniline)] and [(η6p‐cymene)RuCl2(2‐halogen‐4‐nitroaniline)] were synthesized and characterized by various means. The [(η6p‐cymene)RuCl2(4‐nitroaniline)] and [(η6p‐cymene)RuCl2(2‐fluoro‐4‐nitroaniline)] compounds were determined by X‐ray diffraction, appearing in a distorted piano‐stool type of arrangement with similar bond lengths and angles around the ruthenium. The compounds exhibited moderate to strong in vitro cytotoxicity against A549 and MCF‐7 human cancer cells. Substitution of heavy halogen atom on the ortho position of para‐nitroaniline weakened the cytotoxicity against both of MCF‐7 and A549, except the cases of fluorine substitution for hydrogen atom regarding A549 and bromine substitution for chlorine atom regarding MCF‐7, which showed minor deviation.  相似文献   

2.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

3.
A new class of half‐sandwich (η6p‐cymene) ruthenium(II) complexes supported by 2‐aminofluorene derivatives [Ru(η6p‐cymene)(Cl)(L)] ( L  = 2‐(((9H‐fluoren‐2‐yl)imino)methyl)phenol ( L 1 ), 2‐(((9H‐fluoren‐2‐yl)imino)methyl)‐3‐methoxyphenol ( L 2 ), 1‐(((9H‐fluoren‐2‐yl)imino)methyl)naphthalene‐2‐ol ( L 3 ) and N‐((1H‐pyrrol‐2‐yl)methylene)‐9H‐fluorene‐2‐amine ( L 4 )) were synthesized. All compounds were fully characterized by analytical and spectroscopic techniques (IR, UV–Vis, NMR) and also by mass spectrometry. The solid state molecular structures of the complexes [Ru(η6p‐cymene)(Cl)(L2)], [Ru(η6p‐cymene)(Cl)(L3)] and [Ru(η6p‐cymene)(Cl)(L4)] revealed that the 2‐aminofluorene and p‐cymene moieties coordinate to ruthenium(II) in a three‐legged piano‐stool geometry. The synthesized complexes were used as catalysts for the dehydrogenative coupling of benzyl alcohol with a range of amines (aliphatic, aromatic and heterocyclic). The reactions were carried out under thermal heating, ultrasound and microwave assistance, using solvent or solvent free conditions, and the catalytic performance was optimized regarding the solvent, the type of base, the catalyst loading and the temperature. Moderately high to very high isolated yields were obtained using [Ru(η6p‐cymene)(Cl)(L4)] at 1 mol%. In general, microwave irradiation produced better yields than the other two techniques irrespective of the nature of the substituents.  相似文献   

4.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

5.
The simultaneous crystallization of different polymorphs, i.e. concomitant polymorphism, is a phenomenon which, when properly recognized and studied, can provide useful information for a variety of disciplines. It is rare for ruthenium complexes, although it has been observed. In the synthesis of the ruthenium(II) complex chlorido(η6p‐cymene)(dimethyl 2,2′‐bypyridine‐4,5‐dicarboxylate‐κ2N,N′)ruthenium(II) hexafluoridophosphate, [RuCl(C10H14)(C14H12N2O4)]PF6, concomitant polymorphs were crystallized under the same conditions. The colour of both crystals was orange, but the shapes, as well as the orientation of the p‐cymene and methoxycarbonyl groups, were different. The crystal structures of both isomers show approximately the same bond lengths. In the asymmetric unit, there is one cation and one anion. Due to the absence of strong hydrogen bonds, only weak intermolecular interactions were observed. The Hirshfeld surface and two‐dimensional fingerprint plots of both isomers satisfactorily explain the difference in the melting points.  相似文献   

6.
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively.  相似文献   

7.
The title complex, di‐μ‐chloro‐bis­[chloro­(η6p‐cymene)ruthenium(II)]–9H‐carbazole (1/2), [Ru2Cl4(C10H14)2]·2C12H9N, is composed of one [RuCl26p‐cymene)]2 and two 9H‐carbazole mol­ecules. There are one‐half of a dinuclear complex and one 9H‐carbazole mol­ecule per asymmetric unit. In the dinuclear complex, each of the two crystallographically equivalent Ru atoms is in a pseudo‐tetra­hedral environment, coordinated by a terminal Cl atom, two bridging Cl atoms and the aromatic hydro­carbon, which is linked in a η6 manner; the Ru⋯Ru separation is 3.688 (3) Å. The title complex has a crystallographic centre of symmetry located at the mid‐point of the Ru⋯Ru line. Inter­molecular N—H⋯Cl and π–π stacking inter­actions are observed. These inter­actions form a four‐pointed star‐shaped ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [100] direction, which stabilize the crystal packing.  相似文献   

8.
A series of novel ruthenium(II)–cymene complexes ( 1 – 8 ) containing substituted pyridyl–thiazole ligands, [Ru(η6p‐cymene)(L)Cl]Cl (L = N,N‐chelating derivatives), have been synthesized and characterized using elemental analysis, infrared, 1H NMR and 13C NMR spectroscopies and mass spectrometry. All these complexes not only display marked cytotoxicity in vitro against three different human cancer cell lines (HeLa, A549 and MDA‐MB‐231), but also exhibit promising anti‐metastatic activity at sub‐cytotoxic concentrations. Cell cycle analysis shows that the ruthenium(II) complex‐induced growth inhibition was mainly caused by S‐phase cell cycle arrest. Further protein level analysis suggests that compound 5 may exert antitumor activity via a p53‐independent mechanism.  相似文献   

9.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

10.
Organometallic Ru(arene)–peptide bioconjugates with potent in vitro anticancer activity are rare. We have prepared a conjugate of a Ru(arene) complex with the neuropeptide [Leu5]‐enkephalin. [Chlorido(η6p‐cymene)(5‐oxo‐κO‐2‐{(4‐[(N‐tyrosinyl‐glycinyl‐glycinyl‐phenylalanyl‐leucinyl‐NH2)propanamido]‐1H‐1,2,3‐triazol‐1‐yl)methyl}‐4H‐pyronato‐κO)ruthenium(II)] ( 8 ) shows antiproliferative activity in human ovarian carcinoma cells with an IC50 value as low as 13 μM , whereas the peptide or the Ru moiety alone are hardly cytotoxic. The conjugation strategy for linking the Ru(cym) (cym=η6p‐cymene) moiety to the peptide involved N‐terminal modification of an alkyne‐[Leu5]‐enkephalin with a 2‐(azidomethyl)‐5‐hydroxy‐4H‐pyran‐4‐one linker, using CuI‐catalyzed alkyne–azide cycloaddition (CuAAC), and subsequent metallation with the Ru(cym) moiety. The ruthenium‐bioconjugate was characterized by high resolution top‐down electrospray ionization mass spectrometry (ESI‐MS) with regard to peptide sequence, linker modification and metallation site. Notably, complete sequence coverage was obtained and the Ru(cym) moiety was confirmed to be coordinated to the pyronato linker. The ruthenium‐bioconjugate was analyzed with respect to cytotoxicity‐determining constituents, and through the bioconjugate models [{2‐(azidomethyl)‐5‐oxo‐κO‐4H‐pyronato‐κO}chloride (η6p‐cymene)ruthenium(II)] ( 5 ) and [chlorido(η6p‐cymene){5‐oxo‐κO‐2‐([(4‐(phenoxymethyl)‐1H‐1,2,3‐triazol‐1‐yl]methyl)‐4H‐pyronato‐κO}ruthenium(II)] ( 6 ) the Ru(cym) fragment with a triazole‐carrying pyronato ligand was identified as the minimal unit required to achieve in vitro anticancer activity.  相似文献   

11.
The reactions of two diaminotriazine ligands 2,4‐diamino‐6‐(2‐pyridyl)‐1,3,5‐triazine (2‐pydaT) and 6‐phenyl‐2,4‐diamino‐1,3,5‐triazine (PhdaT) with ruthenium–arene precursors led to a new family of ruthenium(II) compounds that were spectroscopically characterized. Four of the complexes were cationic, with the general formula [(η6‐arene)Ru(κ2N,N‐2‐pydaT)Cl]X (X=BF4, TsO; arene=p‐cymene: 1.BF4 , 1.TsO arene=benzene: 2.BF4 , 2.TsO ). The neutral cyclometalated complex [(η6p‐cymene)Ru(κ2C,N‐PhdaT*)Cl] ( 3 ) was also isolated. The structures of complexes 2.BF4 and 3.H2O were determined by X‐ray diffraction. Complex 1.BF4 underwent a partial reversible‐aquation process in water. UV/Vis and NMR spectroscopic measurements showed that the reaction was hindered by the addition of NaCl and was pH‐controlled in acidic solution. At pH 7.0 (sodium cacodylate) Ru–Cl complex 1.BF4 was the only species present in solution, even at low ionic strength. However, in alkaline medium (KOH), complex 1.BF4 underwent basic hydrolysis to afford a Ru–OH complex ( 5 ). Fluorimetric studies revealed that the interaction of complex 1.BF4 with DNA was not straightforward; instead, its main features were closely linked to ionic strength and to the [DNA]/complex ratio. The bifunctional complex 1.BF4 was capable of interacting concurrently through both its p‐cymene and 2‐pydaT groups. Cytotoxicity and genotoxicity studies showed that, contrary to the expected behavior, the complex species was biologically inactive; the formation of a Ru–OH complex could be responsible for such behavior.  相似文献   

12.
Three novel compounds, (η6‐p‐cymene)RuCl2(2‐fluoro‐5‐aminopyridine) (compound 1), (η6‐p‐cymene)RuCl2(5‐amino‐2‐chlorpyridine) (compound 2) and (η6‐p‐cymene)RuCl2(2‐bromo‐ 5‐aminopyridine) (compound 3), were synthesized and characterized. The compound 1 and 3 were determined by X‐ray diffraction, showing a distorted piano‐stool type of geometry with similar bond lengths and angles around the ruthenium. Compound 2 exhibited moderate in vitro activity against A549 and MCF‐7 human cancer cells, the other two lower activities. The UV–vis and fluorescent absorption titrations showed that three compounds binded with CT‐DNA in a minor groove. The intrinsic binding constants (Kb) were calculated to be 2.13(±0.03) × 105 M?1, 2.89(±0.03) × 105 M?1 and 2.45(±0.03) × 105 M?1 for compound 1, 2 and 3, respectively, by using UV–vis absorption titrations data. Among the three compound, the highest value of intrinsic binding constant of compound 2 was consistent with its highest cytoxicity against A549 and MCF‐7 human cancer cells in vitro.  相似文献   

13.
Cationic (arene)ruthenium‐based tetranuclear complexes of the general formula [Ru4(η6‐p‐cymene)4(μ‐NN)2(μ‐OO∩OO)2]4+ were obtained from the dinuclear (arene)ruthenium complexes [Ru2(η6p‐cymene)2(μ‐OO∩OO)2Cl2] (p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, OO∩OO=5,8‐dihydroxy‐1,4‐naphthoquinonato(2?), 9,10‐dihydroxy‐1,4‐anthraquinonato(2?), or 6,11‐dihydroxynaphthacene‐5,12‐dionato(2?)) by reaction with pyrazine or bipyridine linkers (NN=pyrazine, 4,4′‐bipyridine, 4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine]) in the presence of silver trifluoromethanesulfonate (CF3SO3Ag) (Scheme). All complexes 4 – 12 were isolated in good yield as CF3SO salts, and characterized by NMR and IR spectroscopy. The host–guest properties of the metallarectangles incorporating 4,4′‐bipyridine and (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers were studied in solution by means of multiple NMR experiments (1D, ROESY, and DOSY). The largest metallarectangles 10 – 12 incorporating (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers are able to host an anthracene, pyrene, perylene, or coronene molecule in their cavity, while the medium‐size metallarectangles 7 – 9 incorporating 4,4′‐bipyridine linkers are only able to encapsulate anthracene. However, out‐of‐cavity interactions are observed between these 4,4′‐bipyridine‐containing rectangles and pyrene, perylene, or coronene. In contrast, the small pyrazine‐containing metallarectangles 4 – 6 show no interaction in solution with this series of planar aromatic molecules.  相似文献   

14.
The title compound, [(S)‐2‐(anilino­methyl)­pyrrolidine‐N,N′]‐chloro(η6para‐cymene)­ruthenium(II) chloride, [RuCl‐(C10H14)(C11H16N2)]Cl, has been synthesized by the reaction of [RuCl2(p‐cymene)]2 (p‐cymene is para‐iso­propyl­toluene) with (S)‐2‐(anilinomethyl)­pyrrolidine in triethyl­amine/2‐propanol. The Ru atom is in a pseudo‐tetrahedral environment coordinated by a chloride ligand, the aromatic hydro­carbon is linked in a η6 manner and the amine is linked via its two N atoms. The chloride anion is involved in hydrogen bonding with the di­amine moieties through N—H?Cl interactions, with N?Cl distances of 3.273 (4) and 3.352 (4) Å.  相似文献   

15.
Ruthenium‐catalyzed cycloisomerization of 2‐ethynylbiaryls was investigated to identify an optimal ruthenium catalyst system. A combination of [η6‐(p‐cymene)RuCl2(PR3)] and two equivalents of AgPF6 effectively converted 2‐ethynylbiphenyls into phenanthrenes in chlorobenzene at 120 °C over 20 h. Moreover, 2‐ethynylheterobiaryls were found to be favorable substrates for this ruthenium catalysis, thus achieving the cycloisomerization of previously unused heterocyclic substrates. Moreover, several control experiments and DFT calculations of model complexes were performed to propose a plausible reaction mechanism.  相似文献   

16.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

17.
A series of half‐sandwich ruthenium(II) arene complexes [(η6p‐cymene)RuII(R‐BzTSC)Cl]Cl 1 , 2 , 3 (BzTSC = benzaldehyde thiosemicarbazone and R = H, CH3 and C6H5) have been synthesized and characterized by IR, 1H NMR, UV‐visible, electrospray ionization mass spectrometry and elemental analysis. The single‐crystal structures of 1 and 3 have been determined. The molecular orbitals and electronic absorption spectra of the compounds have been calculated using the DFT and TDDFT methods. The in vitro antiproliferative activities of these complexes have been evaluated against four human cancer cell lines (CNE, H292, SKBR3 and Hey1‐B), and 3 is proved to be the most efficient inhibitor, with IC50 values of 20, 31, 10 and 34 μm , respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A series of di‐nuclear ruthenium arene complexes with TSC ligands ([(η6p‐cymene)Ru(N1,S‐TSC)]2Cl2, A‐type, 1 and 2 ) and their corresponding analogues ([(η6p‐cymene)Ru(N2,S‐TSC)]2Cl2, B‐type, 3 and 4 ), in which TSCs act as different coordination mode, have been synthesized and structurally characterized by a variety of physical methods. The molecular structures of 1 , 3 and 4 were determined using single‐crystal X‐ray diffraction analysis. The Gibbs free energy of the two examples of the two types of complexes ( 1 and 3 ) and bonding order in their single‐crystals were discussed using density functional theory (DFT) calculations. The compounds were further evaluated for their in vitro antiproliferative activities against several cancerous and HEK‐293 T noncancerous cell lines, and the results indicate that B‐type complexes show stronger cytotoxicity than A‐type complexes. Furthermore, the interactions of the compounds with DNA were investigated by electrophoretic mobility spectrometry studies.  相似文献   

19.
A transition metal Lewis acid with metal‐centered chirality is obtained by η6:η1:η1 coordination of a 1,3‐disubstituted arene with a phosphane and a pyrazole tether (PArN) to ruthenium. The three‐legged piano‐stool complex [{η6:η1:η1‐(PArN)}Ru(H2O)]2+ (structure depicted) displays remarkable configurational stability. Its planar chiral, neutral precursor [{η6:η1‐(PArN)}RuCl2] can be resolved by preparative HPLC.  相似文献   

20.
Two organometallic Ru(II)‐p‐cymene complexes of the type [Ru(η6p‐cymene)(L)Cl]PF6 1 and 2 , where L is N,N‐bis(4‐isopropylbenzylidene)ethane‐1,2‐diamine (bien, L1 ) or N,N‐bis (pyren‐2‐ylmethylene)ethane‐1,2‐diamine (bpen, L2 ) have been prepared and characterized well. Because of appended pyrenyl groups in coordinated bpen ligand, the complex 2 exhibits higher DNA and protein binding than complex 1 in which isopropylbenzyl groups are incorporated. Interestingly, the luminescent characteristic complex 2 is unique in displaying DNA cleavage after light activation by UVA light at 365 nm through oxygen dependent mechanism. AFM analysis attests the photo‐induced DNA fragmentation ability of complex 2 . Also, the complex 2 cleaves the protein after light exposure in a non‐specific manner suggesting that it can act as a protein photo cleaving agent. In contrast to the trend of DNA and protein interaction of complexes, the complex 1 exhibits cytotoxic activity against human breast carcinoma ( MCF‐7 ) and liver carcinoma ( HepG2 ) with potency higher than that of complex 2 due to enhanced hydrophobicity of isopropyl groups present in p‐cymene and bien ligands. Indeed, complex 2 is inactive against MCF‐7 and HepG2 cancer cell lines even up to 200 μM concentration. The AO/EB staining assay reveals that the complex 1 is able to induce late apoptotic mode of cell death in breast cancer cells, which is further confirmed by inter‐nucleosomal DNA cleavage. Furthermore, the complexes 1 and 2 are evaluated for their catalytic activities and found to be working well for the β‐carboline directed C–H arylation to afford the desired products in good yield (40–47%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号