首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Note from the Editor: It is with great pleasure and enthusiasm that I introduce this essay which accompanies the publication of the fourth segment of the Tetsuo Nozoe Autograph Books. In the conceptualization stages of this project—which shall appear in 15 consecutive issues of The Chemical Record as well as have a significant internet presence—I proposed to my colleagues Eva Wille and Brian Johnson that each segment be accompanied with a specially invited essay or perspective. This proposal was immediately and enthusiastically accepted. To both celebrate the life and warmth of Tetsuo Nozoe, I can hardly imagine a more appropriate essay than one written by two of his grandchildren and one of his own children! I thank the Masamune Family for their touching contribution to this project. The Nozoe Autograph Books and all the accompanying essays, including this essay, are open access for at least a three‐year period at: http://www.tcr.wiley‐vch.de/nozoe . Jeffrey I. Seeman Guest Editor, University of Richmond Richmond, Virginia 23173, USA  相似文献   

2.
Note from the Editor: When I was editing Tetsuo Nozoe's autobiography Seventy Years in Organic Chemistry in the late 1980s, I realized that the history of Japanese organic chemistry was not too well known in countries other than Japan. I urged Professor Nozoe to include the historical context of his life in his writings, and I was absolutely delighted that he did so. I also suggested that he publish a “Riko Majima Family Tree in Chemistry.” Majima was not only Nozoe's professor but, as detailed in Nozoe's autobiography and elsewhere in the literature, the father figure of Japanese organic chemistry. Nozoe was reluctant because to single‐out some chemical academics but not others in such a public manner could—would—prove embarrassing. But faithful to his profession, the obligations to history prevailed and Nozoe's autobiography contains the Majima Family Tree. We now skip ahead 25 years where we are immersed in the publication of the Nozoe Autograph Books (see: http://www.tcr.wiley‐vch.de/nozoe and this introductory essay: J. I. Seeman, Chem. Rec. 2012 , 12, 517–531). I find myself once again an editor studying in the life and legacies of Riko Majima and Tetsuo Nozoe. The “repeating experiences” of history have been felt once again! 2 I asked Professors Ichiro Murata, Shô Itô, and Toyonobu Asao (who are Professor Nozoe's students and biographers) to follow Professor Nozoe's lead and provide his Family Tree in Chemistry. What follows is a reproduction of the Majima Family Tree as provided by Professor Nozoe along with the next generation Family Tree, that being the students of Tetsuo Nozoe's students who themselves became illustrious professors. —Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E‐mail: jseeman@richmond.edu  相似文献   

3.
Note from the Editor: The Nozoe Autograph Books project involves the publication of the entire 1179 pages of Tetsuo Nozoe's autograph books in 15 consecutive issues of The Chemical Record. In the design of this project, three of us—Eva Wille, Brian Johnson and I—had a vision of bringing a wide range of experiences to our communities of readers. We also had an eye to the archival future. The final design included, with each of these issues of The Chemical Record, an essay that would provide context, novel content and especially enjoyable reading, to round out the project. In the 10 issues published to date, and in the others that will follow, the essays range from personal stories to perspectives in the areas of chemistry near and dear to the heart of Tetsuo Nozoe. Eva Wille's essay is particularly special. The daughter of a professor of chemistry of Nozoe's generation at the Ludwig‐Maximilians‐Universität München (Franz Wille, 1909—1986), Wille is a Ph.D. chemist herself, and for many years, has been and is a major figure in the world of scientific publishing. Thus, she has a unique perspective to share. Indeed, all of the authors of these essays have shared their very personal and professional perspectives, and we are thankful for all of them—and for Tetsuo Nozoe and the thousands of our friends and colleagues who signed his books. —Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E‐mail: jseeman@richmond.edu  相似文献   

4.
Note from the Editor: When we walk around a sculpture, it can speak to us in many ways, sometimes quite differently from various view points. Central to Tetsuo Nozoe and the Nozoe Autograph Book project are novel aromatic compounds. Just look at nearly any page and such compounds jump out at us. We can categorize them in many ways. Their structures. Their physical properties. Their pharmacological and toxicological properties. Their commercial utilities. Their symmetry. Their size. In this essay, Graham Bodwell brings to us his analysis of the various ways in which some of the most remarkable of these compounds have been ingeniously synthesized. We are privileged to have Bodwell's vision and his sense of organization and beauty. Tetsuo Nozoe would have beamed! —Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E‐mail: jseeman@richmond.edu  相似文献   

5.
Note from the Editor: According to Robert K. Merton (1988), “Invisible college” is a term used “to designate the informal collectives of scientists interacting in their research on similar problems, these groups being generally limited to a size ‘that can be handled by interpersonal relationships.’ ” Invisible colleges can be highly competitive, even ugly in their priority races, or they can be congenial, even enthusiastically supportive to its members. In the community of organic chemists who studied novel aromatic chemistry in the 1950s–1990s, one man—Tetsuo Nozoe—is largely responsible for bringing together researchers from across the world and setting the tone of brotherhood. Larry Scott, today a senior scholar of that invisible college, warmly shares the spirit of Tetsuo Nozoe with each of us in the following essay. Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E‐mail: jseeman@richmond.edu  相似文献   

6.
DFT (B3LYP, M06‐2X) and MP2 methods are applied to the design of a wide series of the potentially 10‐C‐5 neutral compounds based on 6‐azabicyclotetradecanes: XC1(YCH2CH2CH2)3N 1 – 3 , XC1(YC6H4CH2)3N 4 – 6 , XC1[Y(tBuC6H3)CH2]3N 7 – 9 and carbatranophanes 10 – 25 (X=Me, F, Cl; Y=O, NH, CH2, SiH2; Z=O, CH2, (CH2)2, (CH2)3). Carbatranophanes 10 – 25 are characterized by a sterical compression of their axial 3c–4e XC1←N fragment with respect to that in the parent molecules 4 – 6 . A magnitude of the revealed effect depends on a valence surrounding of the central carbon atom C1, the size and the nature of the side chains (Z) that link the “π‐electron cap” with a tetradecane backbone. This circumstance allowed us to obtain 10‐C‐5 structures with the configuration of the bonds around the C1 atom, which corresponds to practically an ideal trigonal bipyramid. In these compounds, the values of the covalence ratio χ of approximately 0.6 for the coordination C1←N contacts with a covalent contribution (atoms in molecules (AIM) and natural bond orbital (NBO)) are record in magnitude. These values lie close to a low limit of the interval of the χSi←D change (0.6–0.9) being characteristic of the dative and ionic‐covalent (by nature) Si←D bond (D=N, O) in the known 10‐Si‐5 silicon compounds.  相似文献   

7.
The kinetics of the “a” and “b” band emissions arising from the 1Σ ← 3Ou and 1Σ ← 3lu transitions of the diatomic mercury molecule at λmax ~ 4850 Å and 3350 Å, respectively, have been studied at low concentrations of mercury in the presence of N2, C2H6, C3H8, and N2O. Rate constant values have been obtained for the following reactions of the excimer molecule: Hg2(3lu) + N2 → Hg2(3Ou) + N2 and Hg2(3Ou) + RH → Hg2(1Σ) + RH, where RH = C2H6 or C3H8. From a consideration of the detailed kinetics of band emissions, it was also possible to derive rate constants for the quenching reactions of Hg(3P0) atoms. These values are in reasonable agreement with those obtained previously from monitoring atom concentrations directly by 4047 Å absorbiometry.  相似文献   

8.
α‐Methoxy‐ω‐alkyne poly(ethylene glycol) (PEG) was tagged with pendent N‐hydroxy‐succinimidyl activated esters by photografting of a molecular clip. This easily synthesized heterofunctional PEG was found to be a versatile building block for (i) conjugation with an amino derivative and (ii) grafting to azido functional aliphatic polyesters backbone by Huisgen's 1,3‐dipolar cycloaddition. This original combination of “clip” and “click” reactions provides a versatile and straightforward pathway for the synthesis of functional amphiphilic and degradable copolymers valuable for biomedical applications such as in drug‐delivery.

  相似文献   


9.
We report the unprecedented observation and unequivocal crystallographic characterization of the meta‐stable ligand loss intermediate solvento complex trans‐[Ru(bpy)(κ2‐btz)(κ1‐btz)(NCMe)]2+ ( 1 a ) that contains a monodentate chelate ligand. This and analogous complexes can be observed during the photolysis reactions of a family of complexes of the form [Ru($\widehat{NN}$ )(btz)2]2+ ( 1 a – d : btz=1,1′‐dibenzyl‐4,4′‐bi‐1,2,3‐triazolyl; $\widehat{NN}$ =a) 2,2′‐bipyridyl (bpy), b) 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy), c) 4,4′‐dimethoxy‐2,2′‐bipyridyl (dmeobpy), d) 1,10‐phenanthroline (phen)). In acetonitrile solutions, 1 a – d eventually convert to the bis‐solvento complexes trans‐[Ru($\widehat{NN}$ )(btz)(NCMe)2]2+ ( 3 a – d ) along with one equivalent of free btz, in a process in which the remaining coordinated bidentate ligands undergo a new rearrangement such that they become coplanar. X‐ray crystal structure of 3 a and 3 d confirmed the co‐planar arrangement of the $\widehat{NN}$ and btz ligands and the trans coordination of two solvent molecules. These conversions proceed via the observed intermediate complexes 2 a – d , which are formed quantitatively from 1 a – d in a matter of minutes and to which they slowly revert back on being left to stand in the dark over several days. The remarkably long lifetime of the intermediate complexes (>12 h at 40 °C) allowed the isolation of 2 a in the solid state, and the complex to be crystallographically characterized. Similarly to the structures adopted by complexes 3 a and d , the bpy and κ2‐btz ligands in 2 a coordinate in a square‐planar fashion with the second monodentate btz ligand coordinated trans to an acetonitrile ligand.  相似文献   

10.
The internal functionalization of the Keplerate‐type capsule Mo132 has been carried out by ligand exchange leading to the formation of glutarate and succinate containing species isolated as ammonium or dimethylammonium salts. Solution NMR analysis is consistent with asymmetric inner dicarboxylate ions containing one carboxylato group grafted onto the inner side of the spheroidal inorganic shell while the second hangs toward the center of the cavity. Such a disposition has been confirmed by the single‐crystal X‐ray diffraction analysis of the glutarate containing {Mo132} species. A detailed NMR solution study of the ligand‐exchange process allowed determining the binding constant KL of acetate (AcO?), succinate (HSucc?) or glutarate (HGlu?) ligands at the 30 inner coordinating sites, which vary such as K<K<Ksupported by the associated thermodynamic parameters ΔrS* and ΔrH*. Such a variation is mainly explained by a positive entropic gain attenuated by unfavorable steric effect. Furthermore, these results are completed by 1H DOSY and 1H EXSY NMR experiments which are in agreement with bulky guests firmly trapped within the cavity. At last, variable temperature 1H NMR study below 290 K revealed a striking line broadening occurring abruptly within a 5 K range. Such an effect appears closely related to the presence of the ammonium cations suspected to be present within the cavity and then has been interpreted as an inner‐phase transition leading to a frozen state.  相似文献   

11.
The effect of PAMAM dendrimers (generations G3, G4 and G5) on the fibrillation of α‐synuclein was examined by fluorescence and CD spectroscopy, TEM and SANS. PAMAM dendrimers inhibited fibrillation of α‐synuclein and this effect increased both with generation number and PAMAM concentration. SANS showed structural changes in the formed aggregates of α‐synuclein – from cylindrical to dense three‐dimensional ones – as the PAMAM concentration increased, on account of the inhibitory effect. PAMAM also effectively promoted the breaking down of pre‐existing fibrils of α‐synuclein. In both processes – that is, inhibition and disassociation of fibrils – PAMAM redirected α‐synuclein to an amorphous aggregation pathway.

  相似文献   


12.
The synthesis and melt rheology of supramolecular poly(isobutylene) polymers bearing statistically distributed hydrogen‐bonding moieties is reported, aiming at understanding the formation of the underlying supramolecular networks for self‐healing polymers. Two different hydrogen bonds were incorporated into a poly(isobutylene) (PIB) copolymer, one based on a (weak) pyridinium/pyridine interaction, the other based on a (stronger) 2,6‐diaminotriazine/thymine interaction. A direct copolymerization based on living cationic polymerization of isobutene and the comonomers 1 , 2 , and 4 in amounts of 1 mol % lead to the copolymers PIB‐ 1 , PIB‐ 2 , and PIB‐ 4 with a content of ~1 mol % of comonomer and molecular weights ranging from ~2000 to 19,000 g mol?1 (Mw/Mn ~ 1.2–1.5). Subsequent azide/alkyne “click” chemistry enabled the attachment of 2,6‐diaminotriazine‐ and thymine‐moieties to yield the copolymers PIB‐ 5 , PIB‐ 6 , and PIB‐ 7 . Proof of the statistical incorporation of ~1 mol % of hydrogen‐bonding moieties was achieved by 1H NMR spectroscopy and matrix‐assisted laser desorption ionization measurements. The true presence of a supramolecular network in PIB‐ 1 (pyridinium/pyridine interaction) as well as with 1/1 blends of PIBs interacting via the 2,6‐diaminotriazine/thymine interaction (PIB‐ 5 /PIB‐ 6 ) was proven via the increasing plateau modulus with increasing molecular weights (5.5k, 9.9k, 12.4k, 16k, and 19k). Dynamics of the hydrogen bonds in the melt state was investigated by determining the effective cluster lifetime ( τ ) observing a clear difference in the (weaker) pyridinium/pyridine interaction ( τ ~ 1 s) to the 2,6‐ (stronger) diamintriazine/thymine interaction ( τ ~ 100 s). The so‐generated materials will be useful as a basis for self‐healing polymers, as dynamics plays a major role in such polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Copper is a bioessential element in biology with truly unique chemical characteristics in its two relevant oxidation states +I and +II. Significant progress has been made in recent years in the elucidation of the frequently surprising biochemistry of this trace element. Those advances were especially furthered through mutual stimulation involving results from biochemistry, molecular biology, and medicine on one hand and the synthesis as well as the structural and spectroscopic characterization of low molecular weight model complexes on the other. The most notable features of protein-bound active copper are its almost exclusive function in the metabolism of O2 or N/O compounds (NO, N2O) and its frequent association with oxidizing organic and inorganic radicals such as tyrosyl, semiquinones, superoxide, or nitrosyl. This unique biological role of copper can be rationalized given its chemical and assumed evolutionary background.  相似文献   

14.
Two valencies instead of one! Stoichiometric valence and structural valence are two distinct properties of atoms. The former, stoichV, is derived from the composition of a compound and has integer values; the latter, structV, depends on the structure of a compound and has non‐integer values. The scheme shows a representation of valence states of antimony and oxidation of SbIII to SbV, as a function of the eccentricity parameter Φ i.

  相似文献   


15.
The amphiphilic PEG1 500b‐EM AP‐b‐PEG1 500 (EM PAP) triblock copolymer of poly(ethylene glycol) (PEG) and emeraldine aniline‐pentamer (EM AP) in its concentrated solution can self‐assemble into a special shape like “sandglass”, as observed by transmission electron microscopy (TEM), field emission scanning electron microscopy (ESEM) and atomic force microscopy (AFM). This “sandglass”‐shaped assembly is composed of several “rods” aggregated in the middle, with every “rod” being about 8 µm in length and 300 nm in diameter. We conclude that the special “sandglass”‐shaped assembly may come into being because of the inducement effect of the crystallization of EM AP segments, by studying electron diffraction (ED) results and wide‐angle X‐ray diffusion (WAXD) characterization of the EM PAP triblock copolymer.

  相似文献   


16.
Six α, β, β-trifluorostyrenes with the following substituents, viz., p-MeO, p-Me, m-Me, p-Cl, m-Cl, and m-CF3, were synthesized by the reaction of the corresponding Grignard reagents with tetrafluoroethylene in tetrahydrofuran. Similarly, α-and β-trifluoroethenylnaphthalenes were prepared. The substituent electronic effects on the 19F-NMR parameters were investigated for the trifluorostyrenes (I). Linear correlations between the Hammett σ constants and the following 19F-NMR parameters were established, namely, chemical shifts δ. (F1) and δ (F2), coupling constants J12, differences of chemical shifts Δδ3-1 (δ (F3)—δ(f1) or Δδ3-2. The results are consistent with previous expectations based on the simple concept of “distorted π-electron clouds”. Facts are presented which indicate that the Δδ3-1 (or Δδ3-2) values may serve as empirical measures of the degree of polarization of the π bonds of these fluoroolefins.  相似文献   

17.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   


18.
In a new light : The NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR; see structure, green Pchlide, yellow NADPH) is a good model to investigate catalytical processes in enzymes, as its light activation allows an immediate start of the catalyzed reaction. By irradiation with weak, short laser pulses it is possible to detect conformation changes during the reaction and thus to uncover the elementary steps of the catalytic process.

  相似文献   


19.
In this communication an extended “in–out” polymerization method is presented, which leads to the synthesis of novel heteroarm star block terpolymers of the type An(B‐b‐C)n. A four step/one‐pot synthetic procedure is pursued using anionic polymerization under an inert atmosphere. The resulted star‐shaped terpolymer consists of a divinyl benzene nodule bearing pure polystyrene and poly(hexyl methacrylate)‐block‐poly(methyl methacrylate) diblock copolymer arms. It is shown that this kind of star terpolymers can self‐assemble in the bulk forming lamellae mesophase by arm and block segregation. The mechanical properties of the terpolymer have been examined in detail. Finally, the proposed synthetic procedure can be easily employed in other controlled polymerization methods.

  相似文献   


20.
The dehydrocoupling/dehydrogenation behavior of primary arylamine–borane adducts ArNH2 ? BH3 ( 3 a – c ; Ar= a : Ph, b : p‐MeOC6H4, c : p‐CF3C6H4) has been studied in detail both in solution at ambient temperature as well as in the solid state at ambient or elevated temperatures. The presence of a metal catalyst was found to be unnecessary for the release of H2. From reactions of 3 a , b in concentrated solutions in THF at 22 °C over 24 h cyclotriborazanes (ArNH‐BH2)3 ( 7 a , b ) were isolated as THF adducts, 7 a , b? THF, or solvent‐free 7 a , which could not be obtained via heating of 3 a – c in the melt. The μ‐(anilino)diborane [H2B(μ‐PhNH)(μ‐H)BH2] ( 4 a ) was observed in the reaction of 3 a with BH3?THF and was characterized in situ. The reaction of 3 a with PhNH2 ( 2 a ) was found to provide a new, convenient method for the preparation of dianilinoborane (PhNH)2BH ( 5 a ), which has potential generality. This observation, together with further studies of reactions of 4 a , 5 a , and 7 a , b , provided insight into the mechanism of the catalyst‐free ambient temperature dehydrocoupling of 3 a – c in solution. For example, the reaction of 4 a with 5 a yields 6 a and 7 a . It was found that borazines (ArN‐BH)3 ( 6 a – c ) are not simply formed via dehydrogenation of cyclotriborazanes 7 a – c in solution. The transformation of 7 a to 6 a is slowly induced by 5 a and proceeds via regeneration of 3 a . The adducts 3 a – c also underwent rapid dehydrocoupling in the solid state at elevated temperatures and even very slowly at ambient temperature. From aniline–borane derivative 3 c , the linear iminoborane oligomer (p‐CF3C6H4)N[BH‐NH(p‐CF3C6H4)]2 ( 11 ) was obtained. The single‐crystal X‐ray structures of 3 a – c , 5 a , 7 a , 7 b? THF, and 11 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号