首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The compounds Ae3Sn4?xBi1+x (Ae = Sr, Ba) with x < 1 have been synthesized by solid‐state reactions in welded Nb tubes at high temperature. Their structures were determined by single crystal X‐ray diffraction studies to be tetragonal; space group I4/mcm (No. 140); Z = 4, with a = 8.968(1) Å, c = 12.859(1) Å for Sr3Sn3.36Bi1.64(3) ( 1 ) and a = 9.248(2), c = 13.323(3) Å for Ba3Sn3.16Bi1.84(3) ( 2 ). The structure consists of two interpenetrating networks formed by a 3D Ae6/2Bi substructure (anti‐ReO3 type) forming the host, and layers of interconnected four‐member units [Sn4?xBix] with “butterfly”‐like shape as the guest. According to the Zintl‐Klemm concept, the compounds are slightly electron deficient and will be charge balanced for x = 1. The electronic structures of Ae3Sn4?xBi1+x calculated by the TB‐LMTO‐ASA method indicate that the compounds correspond to ideal semiconducting Zintl phases with a narrow band gap for x = 1 (zero‐gap semiconductor). The origin of the slight deviation from the optimal electron count for a valance compound is discussed.  相似文献   

2.
The clathrate‐I phase Cs8–xGe44+y2–y (space group Pm$\bar{3}$ n) was prepared by high‐pressure high‐temperature reactions of Cs4Ge4 and α‐Ge. Different reaction conditions were found to have a strong influence on the lattice parameter of the clathrate‐I phase ranging from 10.8070(2) Å to 10.8493(3) Å. A single crystal with composition Cs8Ge44.40(2)1.60(2) was obtained from a sample with a = 10.8238(2) Å (niobium ampoule, p = 3.4 GPa, Tmax = 1400 °C). Structure analysis based on X‐ray single crystal data shows unambiguously an excess of germanium atoms with respect to the electron balanced composition Cs8Ge442 on basis of the Zintl concept.  相似文献   

3.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

4.
Kx(MgxIn1–x)F3 (x = 0.38) is monoclinic, pseudo tetragonal: a = 12.781(2) Å, b = 12.787(2) Å, c = 7.930(1) Å, β = 90,00(1)°, Z = 20. The crystal structure was solved in the space group P21/a (No. 14), subgroup of the tetragonal space group P4/mbm (No. 127), from X‐ray single crystal data using 4302 unique reflections (1770 with Fo/σ(Fo) > 4). The final observed R factor is 0.053. Kx(MgxIn1–x)F3 has the Magnéli‐bronze structural type, which consists in a tridimensional framework of mixed [(MgxIn1–x)F6] octahedra linked together by corners. The potassium ions are mainly located in large almost fully occupied 15‐coordinated sites and in practically empty 12‐coordinated cavities.  相似文献   

5.
The compounds Ba4Ag2Si6, Eu4Ag2Si6, and Ca4Ag2Si6, prepared from the elements at 1273 K (the components in inner corundum crucibles are enclosed in sealed quartz ampoules), are brittle semiconductors with silvery luster. They react slowly with acids liberating hydrogen. Ba4Ag2[Si6] and Eu4Ag2[Si6] crystallize like Ba4Li2[Si6] (space group Fddd (No. 70); a = 8.613 Å, b = 14.927 Å, c = 19.639 Å, and a = 8.420 Å, b = 14.585 Å, c = 17.864 Å, respectively), whereas Ca4Ag2[Si6] represents a new structure type (space group Fmmm (No. 69); a = 8.315 Å, b = 14.391 Å, c = 8.646 Å). The three compounds are Zintl phases with the formal charges M2+, Ag+ and [Si6]10–. The mean bond lengths d(Si–Si) = 2.335–2.381 Å in the 10π‐Hückel arene [Si6]10– as well as d(Ag–Si) = 2.464–2.595 Å vary with the size of the M2+ cations. The chemical bonding was analyzed in terms of the Electron Localization Function (ELF) and compared with the bonding in related systems (Ce4Co2Si6).  相似文献   

6.
The new clathrate Ba8–xEuxGe433 (x = 0.6) was synthesized at a pressure of 1 GPa and temperatures of up to 1220 K by means of a multi‐anvil device (Walker module) and a hydraulic 1000 ton press. X‐ray powder diffraction data indicate that the crystal structure of Ba8–xEuxGe433 (x = 0.6, space group , a = 21.2588(3) Å) corresponds to that of Ba8Ge433. Measurements of the magnetic susceptibility of Ba8–xEuxGe433 reveal Curie‐paramagnetic behaviour and prove that the electronic state of europium corresponds to 4f7, i.e., Eu2+. Electrical resistivity shows a metal‐like temperature dependence and ρ(300) ≈ 2mΩ cm for x = 0.6. Heat capacity measurements reveal an upturn of cp/T(T) below 7 K that is attributed to magnetic interaction of the europium ions.  相似文献   

7.
Li6+2x[B10Se18]Sex (x ≈ 2), an Ion‐conducting Double Salt Li6+2x[B10Se18]Sex (x ≈ 2) was prepared in a solid state reaction from lithium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 800 °C. Subsequent cooling from 600 °C to 300 °C gave amber colored crystals with the following lattice parameters: space group I2/a (at 173 K); a = 17.411(1) Å, b = 21.900(1) Å, c = 17.820(1) Å, β = 101.6(1)°. The crystal structure contains a well‐defined polymeric selenoborate network of composition ([B10Se16Se4/2]6?)n consisting of a system of edge‐sharing [B10Se16Se4/2] adamantanoid macro‐tetrahedra forming large channels in which a strongly disorderd system of partial occupied Li+ cations and additional disordered Se2? anions is observed. The crystal structure of the novel selenoborate is isotypic to Li6+2x[B10S18]Sx (x ≈ 2) [1]. X‐ray and 7Li magic‐angle spinning NMR data suggest that the site occupancies of the three crystallographically distinct lithium ions exhibit a significant temperature dependence. The lithium ion mobility has been characterized by detailed temperature dependent NMR lineshape and spin‐lattice relaxation measurements.  相似文献   

8.
On the Low Temperature Modifications of Ag6Si2O7 and Ag6Ge2O7 – Synthesis, Crystal Structure, and Comparison of Ag? Ag Distances For the first time, single crystals of Ag6Si2O7 and Ag6Ge2O7 have been obtained by solid state reactions of the binary oxides at temperatures of 350°C while applying oxygen pressures of 700 bar. According to the results of X-ray crystal structure determinations both compounds crystallize isostructural in P21 (Ag6Si2O7: a = 5.3043(5) Å, b = 9.7533(7) Å, c = 15.9283(13) Å, β = 91.165(8)°, 3881 independent reflections, R1 = 3.3%, wR2 = 7.2%; Ag6Ge2O7: a = 5.3713(4) Å, b = 9.9835(8) Å, c = 16.2249(14) Å, β = 90.904(8)°, 2111 independent reflections, R1 = 4.3%, wR2 = 6.0%, Z = 4). The crystal structures contain two independent M2O76? anions, one in a staggered, and the other in an ecliptic conformation. The cationic partial structure may be described as a distorted bcc arrangement of Ag+ and M4+. Comparison of the structures with respect to the Ag? Ag separations reveals the latter to be probably due to intrinsic d10–d10 bonding interactions as far as the range of 2.89 Å to 3.25 Å is considered.  相似文献   

9.
Deep blue‐violet colored powder samples of Ag2ZnZr2F14 were synthesized by heating Zn(NO3)2·4H2O, Ag and ZrOCl2·8H2O at 300 °C under fluorine atmosphere. The crystal structure of Ag2ZnZr2F14 was refined from X‐ray powder diffraction data using the Rietveld method (C2/m, a = 9.0206(1) Å, b = 6.6373(1) Å, c = 9.0563(1) Å, β = 90.44(1)°, Z = 2). The structure is derived from the isotypic Ag3Zr2F14 by replacing only one of the two crystallographically different Ag2+ ions with Zn2+ ions, thus leading to discrete Ag2F7 dimers. These dimers are connected via nearly linear Ag–F···F–Ag bridges with short F···F distances of 2.33 Å to form two‐legged ladders. Magnetic susceptibility measurements and density functional calculations show that the two Ag2+ ions in each Ag2F7 dimer are strongly coupled antiferromagnetically.  相似文献   

10.
Zintl‐Compounds with Gold and Germanium: M3AuGe4 with M = K, Rb, Cs Black, brittle single crystals of M3AuGe4 with M = K, Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and germanium powder at T = 1120 K. The structures of the compounds (space group Pmmn, Z = 2, K3AuGe4: a = 6.655(1)Å, b = 11.911(2)Å, c = 6.081(1)Å; Rb3AuGe4: a = 6.894(1)Å, b = 12.421(1)Å, c = 6.107(1)Å; Cs3AuGe4: a = 7.179(1)Å, b = 12.993(2)Å, c = 6.112(2)Å) were determined from X‐ray single‐crystal diffractometry data. The semiconducting compounds contain equation/tex2gif-stack-2.gif[AuGe4]‐chains with P4‐analogous Ge4‐tetrahedra which are connected by μ2‐bridging gold atoms in a distorted tetrahedral Ge‐coordination.  相似文献   

11.
Synthesis and Crystal Structures of the Calcium Iridium Silicides Ca3Ir4Si4 and Ca2Ir2Si The new compounds Ca3Ir4Si4 und Ca2Ir2Si were prepared by reaction of the elemental components in sealed tantalum ampoules at 1200 °C. Their structures were determined from X‐ray single crystal data. Ca3Ir4Si4(cubic, space group I4¯3m, a = 7.4171(2)Å, Z = 2) crystallizes with the Na3Pt4Ge4 type structure. For Ca2Ir2Si (monoclinic, space group C2/c, a = 9.6567(5)Å, b = 5.8252(2)Å, c = 7.3019(4)Å, β = 100.212(2)°, Z = 4) a new structure was found. Chains of edge sharing, heavily distorted SiIr4‐tetrahedra (Ir‐Si: 2.381 and 2.414Å) are connected via short Ir—Ir‐contacts (2.640Å) to form an open Ir/Si‐framework accommodating a three‐dimensional arrangement of calcium atoms (Ca—Ca: 3.413 ‐ 3.948Å).  相似文献   

12.
The new ternary phase Eu2–xMg2–yGe3 (x = 0.1, y = 0.5) was obtained by solid‐state synthesis and the structure determined by means of Single Crystal X‐ray Diffraction. The compound crystallizes with the orthorhombic space group Cmcm (no. 63) having structural features of the low‐temperature modification of LaSi. The crystal structure contains two different types of germanium anions: isolated Ge4– and $\rm^{2}_{\infty}$ [Ge2–xy] chains. The cation substructure is partially disordered and is best represented assuming a split position. The chemical bonding is well represented by the Zintl‐Klemm concept. Resistivity measurements reveal that the compound is metallic. DFT band structure calculations were carried out on the ideal stoichiometric compound Eu2Mg2Ge3, showing that this model (x = 0; y = 0) would be also metallic as a consequence of the ecliptic stacking of anions. Susceptibility and specific heat measurements evidence the presence of weak, and probably frustrated, antiferromagnetic interactions between disordered europium atoms.  相似文献   

13.
The new compound Yb2+3—xPd12—3+xP7 x = 0.40(4)) was synthesized by sintering of a mixture of elemental components at 1100 °C with subsequent annealing at 800 °C. The crystal structure of Yb2+3—xPd12—3+xP7 was solved and refined from X‐ray single‐crystal diffraction data: space group P6¯, a = 10.0094(4)Å, c = 3.9543(2)Å, Z = 1; R(F) = 0.022 for 814 observed unique reflections and 38 refined parameters. The atomic arrangement reproduces a structure motif of the hexagonal Zr2Fe12P7 type in which one of the transition metal positions is substituted predominantly by ytterbium (Yb : Pd = 0.86(1) : 0.14). The ytterbium atoms are embedded in the 3D polyanion formed by palladium and phosphorus atoms. Two different environments for ytterbium atoms are present in the structure. Magnetic susceptibility measurements and XAS spectroscopy at the Yb LIII edge show the presence of ytterbium in two electronic configurations, 4?13 and 4?14. The following model was derived. Ytterbium atoms in the 3k site are in the 4?13 state, the two remaining positions contain ytterbium in intermediate‐valence states, giving totally 79 % ytterbium in the 4?13 electronic configuration.  相似文献   

14.
The novel nitrides (R1–xCa3+xN1–x/3)Bi2 (with R = La, Ce, Pr) crystallize in the K2[NiF4] structure type (I4/mmm, No. 139, Z = 2). Samples (La1–xCa3+xN1–x/3)Bi2 with x = 0.10, 0.05, 0.00, (Ce1–xCa3+xN1–x/3)Bi2 with x = 0.30, and (PrCa3N)Bi2 were obtained as single phase microcrystalline powders according to X‐ray diffraction and the crystal structure details were derived from Rietveld refinements based on X‐ray and neutron diffraction powder patterns. A partial order of R3+/Ca2+ on two crystallographic sites is governed by different ionic radii and charges. (La1–xCa3+xN1–x/3)Bi2 and (Ce1–xCa3+xN1–x/3)Bi2 exhibit small homogeneity ranges and typically a nitrogen deficiency. In contrast, for (PrCa3N)Bi2 no indications for a significant homogeneity range or deficiency of nitrogen was observed. (La1–xCa3+xN1–x/3)Bi2 with x = 0.05 is a diamagnet. X‐ray absorption spectroscopy at the CeL3‐edge as well as magnetic susceptibility measurements evidence that (Ce1–xCa3+xN1–x/3)Bi2 with x = 0.30 contains Ce3+ in the 4f1 configuration. According to electrical resistivity data, samples from all three systems are heavily doped semiconductors.  相似文献   

15.
The compounds Yb1+xMg1—xGa4 (0 ≤ x ≤ 0.058) and YLiGa4 were synthesized by direct reaction of the elements in sealed niobium crucibles. The atomic arrangement of Yb1+xMg1—xGa4 (x = 0.058) represents a new structure type (space group Pm2, a = 4.3979(3)Å and c = 6.9671(7)Å) as evidenced by single crystal structure analysis and can be described as an ordered variant of CaIn2. YLiGa4 is isotypic to the ytterbium compound according to X‐ray Guinier powder data (a = 4.3168(1)Å and c = 6.8716(2)Å). Measurements of the magnetic susceptibility of both compounds reveal intrinsic diamagnetic behaviour, i.e., ytterbium in the 4f14 configuration for Yb1+xMg1—xGa4 (x = 0). From electrical resistivity data both compounds can be classified as metals. The compressibility of Yb1+xMg1—xGa4 (x = 0.058) as measured in diamond anvil cells by angle‐dispersive X‐ray diffraction is compatible with a valence change of the ytterbium atoms at high‐pressures and indicates a slight anisotropy which is in accordance with the structural organisation of the gallium network. X‐ray absorption spectra of the Yb LIII edge of Yb1+xMg1—xGa4 (x = 0.058) at pressures up to 25.0 GPa show a two‐peak structure which reveals the presence of Yb in the 4f14 and 4f13 states. The amount of ytterbium in the 4f13 state increases in two steps with progressing compression. The bonding analysis by means of the electron localization function reveals the Zintl‐like character of both compounds and confirms the 4f14 state for the majority of ytterbium atoms.  相似文献   

16.
The intermetallic phases Tb2NiAl4Ge2 and Ce2NiAl6‐xGe4‐y (x ∼ 0.24, y ∼ 1.34) were synthesized in molten Al at temperatures below 1000 °C. Both compounds adopt the tetragonal space group I4/mmm with cell parameters of a= 4.1346(2) Å c = 19.3437(7) Å for Tb2NiAl4Ge2 and a= 4.1951(9) Å and c = 26.524(7) Å for Ce2NiAl6‐xGe4‐y. The Tb2NiAl4Ge2 structure features NiAl4Ge2 layers separated by a double layer of rare earth ions. The Ce2NiAl6‐xGe4‐y (x ∼ 0.24, y ∼ 1.34) structure also contains the NiAl4Ge2 layers along with a vacancy defect PbO‐type Al2‐xGe2‐y layer, and is related to the Ce2NiGa10 structure type. Ordering of vacancies cause the formation of a 3ax3b superstructure in the crystal as seen by electron diffraction experiments. Tb2NiAl4Ge2 exhibits Curie‐Weiss paramagnetic behavior with an antiferromagnetic transition observed at ∼20 K. Ce2NiAl6‐xGe4‐y shows a much more complex magnetic behavior possibly due to temperature induced variation in the valency of the Ce atoms.  相似文献   

17.
The new calcium iron iridium hydrogarnet Ca3(Ir2–xFex)(FeO4)2–x(H4O4)1+x (0 ≤ x ≤ 1) was obtained by hydrothermal synthesis under strongly oxidizing alkaline conditions. The compound adopts a garnet‐like crystal structure and crystallizes in the acentric cubic space group I4 3d (no. 220) with a = 12.5396(6) Å determined at T = 100 K for a crystal with a refined composition Ca3(Ir1.4Fe0.6)(FeO4)1.4(O4H4)1.6. Iridium and iron statistically occupy the octahedrally coordinated metal position, the two crystallographically independent tetrahedral sites are partially occupied by iron. Hydroxide groups are found to cluster as hydrogarnet defects, i.e. partially substituting oxide anions around the empty tetrahedral metal sites. The presence of hydroxide ions was confirmed by infrared spectroscopy and the hydrogen content was quantified by carrier gas hot extraction; the overall composition was verified by energy dispersive X‐ray spectroscopy. The structure model is supported by 57Fe‐Mössbauer spectroscopic data evidencing different Fe sites and a magnetic ordering of the octahedral iron sublattice at room temperature. The thermal decomposition proceeds via three steps of water loss and results in Ca2Fe2O5, Fe2O3 and Ir. Mössbauer and magnetization data suggest magnetic order at ambient temperature with complex magnetic interactions.  相似文献   

18.
Recently lithium phosphidogermanates were discovered as fast lithium ion conductors for potential usage as solid electrolytes in all solid-state batteries. In this context we also studied sodium phosphidogermanates since sodium ion conductors are of equal interest. Na2Ge3P3 and Na5Ge7P5 both crystallize in the monoclinic space group C2/m with unit cell parameters of a = 17.639(4) Å, b = 3.6176(7) Å, c = 11.354(2) Å, β = 92.74(3)° and a = 16.168(5) Å, b = 3.6776(7) Å, c = 12.924(4) Å, β = 91.30(3)°, respectively. Both show linearly condensed 9-atom cages of four Ge / five P and five Ge / four P atoms, respectively. These cages contain Ge–Ge bonds and form one-dimensional tubes by sharing three atoms. The parallel tubes are paired through further Ge–Ge bonds. Both structures are closely related to the one of the fibrous type of crystalline red phosphorus. A comparison with other compounds such as NaGe3P3 and GeP reveals recurring structural motifs with a broad variety of connection patterns. According to the general formula Na4+xGe6+xP6–x with x = 0 and 1, the two novel structures hint for the possibility of a variable Na content which might allow Na ion mobility.  相似文献   

19.
YbSi2 and the derivatives YbTxSi2–x (T = Cr, Fe, Co) crystallizing in the α‐ThSi2 structure type were obtained as single crystals from reactions run in liquid indium. All silicides were investigated by single‐crystal X‐ray diffraction, I41/amd space group and the lattice constants are: a = 3.9868(6) Å and c = 13.541(3) Å for YbSi2, a = 4.0123(6) Å and c = 13.542(3) Å for YbCr0.27Si1.73, a = 4.0142(6) Å and c = 13.830(3) Å for YbCr0.71Si1.29, a = 4.0080(6) Å and c = 13.751(3) Å for YbFe0.34Si1.66, and a = 4.0036(6) Å, c = 13.707(3) Å for YbCo0.21Si1.79. YbSi2 and YbTxSi2–x compounds are polar intermetallics with three‐dimensional Si and M (T+Si) polyanion sub‐networks, respectively, filled with ytterbium atoms. The degree of substitution of transition metal at the silicon site is signficant and leads to changes in the average bond lengths and bond angles substantially.  相似文献   

20.
The oxonitridoaluminosilicate chloride Pr10[Si10?xAlxO9+xN17?x]Cl was obtained by the reaction of praseodymium metal, the respective chloride, AlN and Al(OH)3 with “Si(NH)2” in a radiofrequency furnace at temperatures around 1900 °C. The crystal structure was determined by single‐crystal X‐ray diffraction (Pbam, no. 55, Z = 2,a = 10.5973(8) Å, b = 11.1687(6) Å, c = 11.6179(7) Å, R1 = 0.0337). The sialon crystallizes isotypically to the oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl, which represent a new layered structure type. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/Noccupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The Si and Al atoms were refined equally distributed on their three crystallographic sites, due to their poor distinguishability by X‐ray analysis. The tetrahedra layers of the structure consist of condensed [(Si,Al)N2(O,N)2] and [(Si,Al)N3(O,N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compound was derived from electron probe micro analyses (EPMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号