首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Creeping flow past a sphere is solved for a limiting case of fluid behaviour: an abrupt change in viscosity.List of Symbols d ij Component of rate-of-deformation tensor - F d Drag force exerted on sphere by fluid - G (d) Coefficients in expression for ij in terms of d ij - G YOJK (d) Coefficients in power series representing G (d) - R Radius of sphere - r Spherical coordinate - V Velocity of fluid very far from sphere - v i Component of the velocity vector - x Dimensionless radial distance, r/R - x i Rectangular Cartesian coordinate - Dimensionless quantity defined by (26) - (d) Potential defined by (7) - Value of x denoting border between Regions 1 and 2 as a function of - 1, 2 Lower and upper limiting viscosities defined by (10) - Spherical coordinate - * Value of for which =1 - Value of denoting border between regions 1 and 2 as a function of x - Newtonian viscosity - ij Component of the stress tensor - Spherical coordinate - 1, 2 Stream functions defined by (12) and (14) - Second and third invariants of the stress tensor and of the rate-of-deformation tensor, defined by (3)  相似文献   

2.
Steady, axisymmetric, isothermal, incompressible flow past a sphere with uniform blowing out of the surface is investigated for Reynolds numbers in the range 1 to 100 and surface velocities up to 10 times the free stream value. A stream-function-velocity formulation of the flow equations in spherical polar co-ordinates is used and the equations are solved by a Galerkin finite-element method. Reductions in the drag coefficients arising from blowing are computed and the effects on the viscous and pressure contributions to the drag considered. Changes in the surface pressure, surface vorticity and flow patterns for two values of the Reynolds number (1 and 40) are examined in greater detail. Particular attention is paid to the perturbation to the flow field far from the sphere.  相似文献   

3.
We consider the flow past a sphere held at a fixed position in a uniform incoming flow but free to rotate around a transverse axis. A steady pitchfork bifurcation is reported to take place at a threshold \(Re^\mathrm{OS}=206\) leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state up to \(Re\approx 270\) and confirm that it substantially differs from the steady-state solution which exists in the wake of a fixed, non-rotating sphere beyond the threshold \(Re^\mathrm{SS}=212\). A weakly nonlinear analysis is carried out and is shown to successfully reproduce the results and to give substantial improvement over a previous analysis (Fabre et al. in J Fluid Mech 707:24–36, 2012). The connection between the present problem and that of a sphere in free fall following an oblique, steady (OS) path is also discussed.  相似文献   

4.
5.
Summary The flow of an incompressible fluid of second grade past an infinite porous plate subject to either suction or blowing at the plate is studied. It is found that existence of solutions is tied in with the sign of material moduli and in marked contrast to the Classical Newtonian, fluid solutions can be exhibited for the blowing problem.
Sommario Si studia la corrente di un fluido incomprimibile di secondo grado che lambisce una lastra porosa da cui è succhiato o soffiato. Si trova che l'esistenza delle soluzioni è legata al segno dei moduli del materiale e, in netto contrasto col fluido newtoniano classico, si possono trovare soluzioni per il problema del soffiamento.
  相似文献   

6.
7.
8.
Summary A model has been developed for the flow of a non-Newtonian fluid past a porous sphere. The drag force exerted on a porous sphere moving in a power-law fluid is obtained by an approximate solution of equations of motion in the creeping flow regime. It is predicted that the effect of the pseudoplastic anomaly on the drag force is more pronounced at large porosity parameters.
Zusammenfassung Es wird ein Modell für die Strömung einer nichtnewtonschen Flüssigkeit längs einer porösen Kugel entwickelt. Die auf die in einer Ostwald-DeWaele-Flüssigkeit bewegte Kugel ausgeübte Reibungskraft wird durch eine Näherungslösung der Bewegungsgleichungen für schleichende Strömung gewonnen. Man findet, daß der Einfluß der Abweichung vom newtonschen Verhalten um so ausgeprägter wird, je größer die Porosität ist.

A, B, C, D a, b, c, d coefficients in eqs. [10] and [18] - F D drag force - K consistency index in power-law model - k 1 ,k 2 coefficients defined by eq. [18] - m porosity parameter - n flow index in power-law model - P pressure - P * dimensionless pressure defined by eq. [4] - P pressure difference - R radius of porous sphere - r radial distance from the center of the sphere - U velocity of uniform stream - u i velocity component - u i * dimensionless velocity component defined by eq. [4] - Y drag force correction factor defined by eq. [27] - ij rate of deformation tensor - ij * dimensionless rate of deformation tensor defined by eq. [4] - , spherical coordinates - dimensionless radial distance defined by eq. [4] - second invariant of rate of deformation tensor - * dimensionless second invariant of rate of deformation tensor defined by eq. [4] - ij stress tensor - ij * dimensionless stress tensor defined by eq. [4] - stream function - * dimensionless stream function defined by eq. [4] - i inside the surface of the sphere - o outside the surface of the sphere With 1 figure and 1 table  相似文献   

9.
Hypersonic rarefied gas flow over the windward face of a sphere is considered in the presence of distributed injection from the surface of the body. A similar problem was previously solved in [1–3] within the framework of continuum mechanics and in [4] on the basis of model kinetic equations. In the present study the calculations were carried out using the Monte Carlo method of direct statistical modeling [5, 6]. The injected gas was the same as the free-stream gas. A simple monatomic gas model with a rigid sphere interaction potential was employed. The reflection of the molecules from the surface of the body was assumed to be diffuse with total energy accommodation. The calculation procedure using weighting factors is described in [7]. The influence of injection on the mechanical and thermal effect of the gas flow on the body is investigated for various degrees of rarefaction of the medium and injection rates.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 175–179, July–August, 1990.  相似文献   

10.
The supersonic flow of nitrogen past a sphere is studied in the framework of the complete Navier-Stokes equations and the relaxation equation with allowance for rotational-translational relaxation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 170–174, March–April, 1980.I thank V. N. Gusev for interest in the work and valuable discussions and V. K. Molodtsov for assisting in the development of the numerical algorithm for solving the problem.  相似文献   

11.
Flow development in the wake of a dual step cylinder has been investigated experimentally using Laser Doppler Velocimetry and flow visualization. The dual step cylinder model is comprised of a large diameter cylinder (D) mounted at the mid-span of a small diameter cylinder (d). The experiments have been performed for a Reynolds number (Re D ) of 1,050, a diameter ratio (D/d) of 2, and a range of large cylinder aspect ratios (L/D). The results show that the flow development is highly dependent on L/D. The following four distinct flow regimes can be identified based on vortex dynamics in the wake of the large cylinder: (1) for L/D ≥ 15, three vortex shedding cells form in the wake of the large cylinder, one central cell bounded by two cells of lower frequency, (2) for 8 < L/D ≤ 14, a single vortex shedding cell forms in the wake of the large cylinder, (3) for 2 < L/D ≤ 6, vortex shedding from the large cylinder is highly three-dimensional. When spanwise vortices are shed, they deform substantially and attain a hairpin shape in the near wake, (4) for 0.2 ≤ L/D ≤ 1, the large cylinder induces vortex dislocations between small cylinder vortices. The results show that for Regimes I to III, on the average, the frequency of vortex shedding in the large cylinder wake decreases with L/D, which is accompanied by a decrease in coherence of the shed vortices. In Regime IV, small cylinder vortices connect across the large cylinder wake, but these connections are interrupted by vortex dislocations. With decreasing L/D, the frequency of dislocations decreases and the dominant frequency in the large cylinder wake increases toward the small cylinder shedding frequency.  相似文献   

12.
In recent years considerable interest has developed in the problems of steady-state supersonic flow of a mixture of gases about bodies with the formation of detonation waves and slow combustion fronts. This is due in particular to the problem of fuel combustion in a supersonic air stream.In [1] the problem of supersonic flow past a wedge with a detonation wave attached to the wedge apex is solved. This solution is based on using the equation of the detonation polar obtained in [2]-the analog of the shock polar for the case of an exothermic discontinuity. In [3] a solution is given of the problem of cone flow with an attached detonation wave, and [4] presents solutions of the problems of supersonic flow past the wedge and cone with the formation of attached adiabatic shocks with subsequent combustion of the mixture in slow combustion fronts. In the two latter studies two different solutions were also found for the problem of flow past a point ignition source, one solution with gas combustion in the detonation wave, the other with gas combustion in the slow combustion front following the adiabatic shock. These solutions describe two different asymptotic pictures of flow of a combustible gas mixture past bodies.In an experimental study of the motion of a sphere in a combustible gas mixture [5] it was found that the detonation wave formed ahead of the sphere splits at some distance from the body into an ordinary (adiabatic) shock and a slow combustion front. Arguments are presented in [6] which make it possible to explain this phenomenon and in certain cases to predict its occurrence.The present paper presents examples of the calculation of flow of a combustible gas mixture past a sphere with a detonation wave in the case when the wave does not split. In addition, the flow near the point at which the detonation wave splits is analyzed for the case when splitting occurs where the gas velocity behind the wave is greater than the speed of sound. This analysis shows that in the given case the flow calculation may be carried out without any particular difficulties. On the other hand, the calculation of the flow for the case when the point of splitting is located in the subsonic portion of the flow behind the wave (or in the region of influence of the subsonic portion of the flow) presents difficulties. This flow case is similar to the problem of the supersonic jet of finite width impacting on an obstacle.  相似文献   

13.
14.
We give an analytic solution at the 10th order of approximation for the steady-state laminar viscous flows past a sphere in a uniform stream governed by the exact, fully non-linear Navier-Stokes equations. A new kind of analytic technique, namely the homotopy analysis method, is applied, by means of which Whitehead's paradox can be easily avoided and reasonably explained. Different from all previous perturbation approximations, our analytic approximations are valid in the whole field of flow, because we use the same approximations to express the flows near and far from the sphere. Our drag coefficient formula at the 10th order of approximation agrees better with experimental data in a region of Reynolds number Rd<30, which is considerably larger than that (Rd<5) of all previous theoretical ones.  相似文献   

15.
Consideration is given to the problem of a sphere falling along the axis of a vertical cylindrical tube containing a viscoelastic fluid. Numerical predictions of the flow are obtained using a well established finite element Galerkin mixed formulation. The effect of elasticity on the streamline pattern, the drag and the stress field are discussed.  相似文献   

16.
A numerical investigation of flow around a sphere is performed and compared with previous studies. Here, a second-order accurate, finite volume method is used in order to predict the instantaneous and time-averaged flow characteristics using large eddy simulation (LES) on the multi-block grid system. Namely, the objectives of this article are: (i) the presentation of flow structures in the wake region downstream of the sphere with a wide variety of flow properties such as the distribution of velocity vectors, patterns of streamlines, Reynolds stress correlations, root mean square of velocity components and other time-averaged flow data in order to reveal the vortical flow structures in detail and (ii) to demonstrate the abilities of computational methods in simulation of vortical flow data. Finally, it has been concluded that there are good agreements between the experimental results and numerical predictions.  相似文献   

17.
The stress variational principle is employed to obtain the lower bound for the drag offered by the creeping flow of a power law fluid past a Newtonian fluid sphere. In spite of the unprescribed interfacial velocity, a bound-on-bound approach yields bounds that are close to the upper bound obtained by Mohan (1974). Furthermore, for very viscous drops (solid behavior) the theory gives lower bounds that differ considerably from those of Wasserman & Slattery (1964) and show good agreement with the results of Yoshioka & Adachi (1973). The approach presented in this work provides an insight into the method of analyzing multiphase flow situations involving non-Newtonian fluids.  相似文献   

18.
Tangential and radial velocity profiles were measured for the flow about a sphere rotating slowly in a Newtonian fluid, contained in a rectangular tank. Velocities were determined from enlarged streak photographs of aluminium particles moving in a collimated “sheet” of light, at several planes through the flow field. Similar velocity profiles were measured for the flow of a 1.50% Natrosol 250 H solution about two spheres of different diameters rotating in two different sized rectangular tanks. A set of velocity distributions were also measured for a sphere rotating in a 0.9% Natrosol 250 H solution. A dye tracer study of the flow about a sphere rotating in this liquid is presented as well. Both Natrosol solutions exhibited viscoelastic behaviour. The Newtonian fluid study was carried out at a Reynolds number of 1.2 and the viscoelastic fluid studies were within the Reynolds number range of 0.05–1.24.The zero shear viscosities of the Natrosol solutions were measured using the falling-sphere method. The non-Newtonian material parameters were obtained by fitting the theoretical curves to the measured velocity data. The values of the elastic and shear thinning parameters for the two liquids obtained in the different geometrical and dynamical situations are compared.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号