首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the synthesis and some reactions of potassium, rubidium, cesium and trimethylsilyl carbamoselenothioates. The potassium salts were synthesized in 70–80 % yields by reacting the corresponding thiocarbamoyl chlorides with potassium selenide in acetonitrile. Furthermore, the rubidium and cesium salts were obtained in good yields by treating the trimethylsilyl esters with the corresponding metal fluorides. The crystal structure of acetonitrile‐solvated potassium N,N‐dimethylcarbamoselenothioate consisted of dimeric units, featuring μ‐carbamoselenothioate anions associated with potassium cations that are located on the upper and lower sides of a plane involving two opposing carbamoselenothioate groups. These heavier alkali metal salts readily reacted with alkyl halides to give both S‐ and Se‐alkyl esters. The reaction of the potassium salts with trimethylsilyl chlorides forms S‐ and Se‐trimethylsilyl carbamoselenothioates which are in equilibrium. The reaction of the salts and silyl esters with organo Group‐14 and ‐15 elements halides gave exclusively the corresponding Se‐substituted products in good yields.  相似文献   

2.
A series of O‐triorganosilyl carbamoselenoates were isolated in good yields from the reaction of sodium or potassium carbamoselenoates with triorganosilyl chlorides. The O‐silyl carbamoselenoates readily reacted with RbF and CsF and with organo‐germanium, ‐tin, and ‐lead halides and gave the corresponding heavy alkali metal and Se‐substituted Group 14 organometal and carbamoselenoates in moderate to good yields.  相似文献   

3.
Sodium and potassium carbamotelluroates [M(R2NCOTe), M = Na, K, Rb, Cs] were synthesized in moderate to good yields by reacting carbamoyl chloride with the corresponding alkali metal tellurides. The salts readily reacted with trimethylsilyl chloride to form O‐trimethylsilyl carbamotelluroate (R2NCTeOSiMe3), which further reacted with RbF and CsF to lead to the corresponding heavy alkali metal carbamotelluroates. These salts reacted with alkyl iodide and carbamoyl chlorides to give the corresponding Te‐alkyl carbamotelluroates and dicarbamoyl tellurides in moderate yields.  相似文献   

4.
The new L ‐lysine alkali‐metal salts 1 – 5 (M+=Na+ and K+) with different alkyl groups at the Nα‐position were easily synthesized, and their hydro‐ and organogelation properties were investigated. All compounds were H2O‐soluble, and some salts, especially the potassium salts, functioned as a hydrogenator that could gel water below 2 wt‐%. These salts also had organogelation abilities for many organic solvents.  相似文献   

5.
The reaction of 2,4‐diaryl 1,3,2,4‐dithiadiphosphetane‐2,4‐disulfide with diketonide of d ‐mannitol has been found to give optically active bisaryldithiophosphonic acids transformed into the corresponding diammonium salts by the treatment of n‐hexadecylamine. O,O‐Bis(trimethylsilyl) ether of d ‐mannitol ketonide reacts with 2,4‐diaryl 1,3,2,4‐dithiadiphosphetane‐2,4‐disulfide to form chiral S,S‐disilylbisaryldithiophosphonate. Diammonium bisaryldithiophosphonate possesses antibacterial activity against Staphylococcus aureus ATCC 6538‐P.  相似文献   

6.
This paper describes an efficient approach for the synthesis of a new series of 6‐[3‐alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl]nicotinic acids (where alkyl = CH3; aryl = Ph, 4‐OCH3Ph, 4,4′‐BiPh; and heteroaryl = 2‐Furyl) from the hydrolysis reaction of alkyl(aryl/heteroaryl)substituted 2‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐pyrazol‐1‐yl)‐5‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐1‐carbonylpyrazol‐1‐yl)pyridines, under basic conditions and at 70–95% yields. In a subsequent step, the esterification reaction of pyrazolyl‐nicotinic acids done in thionyl chloride and methanol led to the isolation of a series of methyl 6‐[alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl] nicotinates as stable hydrochloride salts at 64–84% yields, which could be easily converted to hydrazides to give new oxadiazolyl‐pyrazolyl‐pyridine tricyclic scaffolds at good yields from a [4 + 1] cyclocondensation reaction with 1,1,1‐triethoxyethane and 1‐(triethoxymethyl)benzene as the reagent/solvent.  相似文献   

7.
The first ferrocenecarboselenoic acid was synthesized and characterized. The existence of tautomeric equilibrium between the selenol (FcCOSeH) and selenoxo forms (FcCSeOH) in polar solvents was proven by 1H‐, 13C‐ and 77Se‐NMR spectra. The selenoxo form exists predominantly in a polar solvent at low temperature below –70 °C. Treatment of this acid with lithium, sodium, and potassium hydrides and with rubidium and cesium fluorides gave the corresponding alkali metal ferrocenecarboselenoates in quantitative yields. Treatment with 4‐methylphenyl isocyanate at room temperature led to ferrocenoyl 4‐methylphenylcarbamoyl selenide FcCOSeC(O)NHC6H4Me‐4 in high yield. A similar reaction with phenyl isothiocyanate formed a mixture of FcCOSeC(S)NHPh and FcCOSeC(SH)=NPh in moderate to good yield. The carboselenoic acid readily reacted with piperidine to give piperidinium ferrocenecarboselenoate in good yield. Air oxidation of this selenoic acid afforded diferrocenoyl selenide as a major product along with diferrocenoyl diselenide. The structures of the selenide (FcCO)2Se and diselenide (FcCOSe)2 were examined by single‐crystal X‐ray analysis.  相似文献   

8.
The 1,3,4,6‐tetra‐O‐acetyl‐2‐azido‐2‐deoxy‐β‐D ‐mannopyranose ( 4 ) or the mixture of 1,3,6‐tri‐O‐acetyl‐2‐azido‐2‐deoxy‐4‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐galactopyranosyl)‐β‐D ‐mannopyranose ( 10 ) and the corresponding α‐D ‐glucopyranose‐type glycosyl donor 9 / 10 reacted at room temperature with protected nucleosides 12 – 15 in CH2Cl2 solution in the presence of BF3?OEt2 as promoter to give 5′‐O‐(2‐azido‐2‐deoxy‐α‐D ‐glycosyl)nucleosides in reasonable yields (Schemes 2 and 3). Only the 5′‐O‐(α‐D ‐mannopyranosyl)nucleosides were obtained. Compounds 21, 28, 30 , and 31 showed growth inhibition of HeLa cells and hepatoma Bel‐7402 cells at a concentration of 10 μM in vitro.  相似文献   

9.
Bovine serum albumin (BSA)‐conjugated MxSey (M=Ag, Cd, Pb, Cu) nanomaterials with different shapes and sizes were synthesized in water at room temperature by a protein‐directed, solution‐phase, green synthetic method. The method features very low energy consumption and nontoxic reagents with high yields of concentrated nanoparticles. The obtained bioconjugated nanoparticles have good dispersibility, bioactivity, and biocompatibility. In addition, various functional groups of protein on the surface of the nanocrystals are suitable for further biological interactions or couplings, which is very important for further biological applications.  相似文献   

10.
For the convenient synthesis of (1→6)‐α‐D ‐glucopyranan, i. e., dextran ( 4 ), ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐allyl‐β‐D ‐glucopyranose ( 1 ) has been carried out using BF3·OEt2. With a ratio of [BF3·OEt2]/[ 1 ] = 0.5 at 0 °C for 140 h, the yield and Mn of the obtained polymer are 84.0% and 21 700, respectively. The polymer consists of (1→6)‐α‐linked 2,3,4‐tri‐O‐allyl‐D ‐glucopyranose ( 2 ) which is similar to the results for the cationic ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐methyl‐β‐D ‐glucopyranose and 1,6‐anhydro‐2,3,4‐tri‐O‐ethyl‐β‐D ‐glucopyranose. Polymer 2 was isomerized using tris(triphenylphosphine)‐chlororhodium as the catalyst in toluene/ethanol/water to yield polymeric 2,3,4‐tri‐O‐propenyl‐(1→6)‐α‐D ‐glucopyranan ( 3 ). Deprotection of the propenyl ether linkage of 3 was then performed using hydrochloric acid in acetone to give 4 .  相似文献   

11.
In this research, green procedure was employed for biosynthesis of magnetic nanoparticles of iron oxide (Fe3O4‐MNPs) by reduction of ferric chloride solution with Orange peel water extract. Also, dihydro‐2H‐cyclopenta[d][1,3]oxazole was generated through multicomponent reaction of 1,3‐oxazole‐2(3H)‐thione, dialkyl acetylenedicarboxylates, α‐haloketones, and Fe3O4‐MNPs as catalyst at ambient temperature in good yield. Initially, 1,3‐oxazole‐2(3H)‐thione derivatives as one of the precursors are produced through the reaction of alkyl bromides, isothiocyanate, sodium hydride, and Fe3O4‐MNPs as catalyst water at ambient temperature in 83–95% yields. Also, diphenyl‐picrylhydrazine radical trapping and ferric reduction activity potential assays are used for evaluation of antioxidant activity of some synthesized compounds. Among investigated compounds, 4b has good power for radical trapping activity and 4d has good reduction power to butylated hydroxytoluene and 2‐tert‐butylhydroquinone.  相似文献   

12.
Mixtures of alkyllithium and heavier alkali‐metal alkoxides are often used to form alkyl compounds of heavier alkali metals, but these mixtures are also known for their high reactivity in deprotonative metalation reactions. These organometallic mixtures are often called LiC–KOR superbases, but despite many efforts their constitution remains unknown. Herein we present mixed alkali‐metal alkyl/alkoxy compounds produced by reaction of neopentyllithium with potassium tert‐butoxide. The key to success was the good solubility and temperature‐stability of neopentyl alkali‐metal compounds, leading to hexane‐soluble mixtures, which allowed handling at ambient temperatures and isolation by crystallization. The compounds in solid state and in solution were identified by X‐ray crystallography and NMR spectroscopy as mixtures of lithium/potassium neopentyl/tert‐butoxy aggregates of varying compositions LixKyNpz(OtBu)x+y?z.  相似文献   

13.
Polyethers with unsymmetrical structures in the main chains and pendant chloromethyl groups were synthesized by the polyaddition of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with certain diacyl chlorides with quaternary onium salts or pyridine as catalysts. The unsymmetrical polyaddition of EGMO containing two different cyclic ether moieties such as oxirane and oxetane groups with terephthaloyl chloride proceeded smoothly in toluene at 90 °C for 6 h to give polymer 1 with a number‐average molecular weight (Mn) of 51,700 in a 93% yield when tetrabutylammonium bromide (TBAB) was used as a catalyst. The polyaddition also proceeded smoothly under the same conditions when other quaternary onium salts, such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide, and pyridine were used as catalysts. However, without a catalyst no reaction occurred under the same reaction conditions. Polyadditions of EGMO with isophthaloyl chloride and adipoyl chloride gave polymer 2 (Mn = 28,700) and polymer 3 (Mn = 25,400) in 99 and 65% yields, respectively, under the same conditions. The chemical modification of the resulting polymer, polymer 1 , which contained reactive pendant chloromethyl groups, was also attempted with potassium 3‐phenyl‐2,5‐norbornadiene‐2‐carboxylate with TBAB as a phase‐transfer catalyst, and a polymer with 65 mol % pendant norbornadiene moieties was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 368–375, 2001  相似文献   

14.
Oximes of glucose, xylose, lactose, fructose, and mannose have been prepared. Nitrosation of the oximes of glucose, xylose, and lactose with NaNO2/HCl afforded 2‐(β‐glycopyranosyl)‐1‐hydroxydiazene‐2‐oxides, which were isolated as salts 13 , 22 , and 28 . Nitrosation of fructose oxime 29 furnished fructose, whereas nitrosation of mannose oxime 30 with NaNO2/HCl afforded the 1‐hydroxy‐2‐(β‐d‐ mannopyranosyl)diazene‐2‐oxide 32 , from which the p‐anisidinium salt 31 and the sodium salt 33 were prepared. However, nitrosation of 30 with isopentyl nitrite in aqueous solutions of CsOH or KOH resulted in the formation of the 2‐(α‐D ‐mannofuranosyl)‐1‐hydroxydiazene‐2‐oxide salts 34 and 35 , respectively. Methylation of the ammonium 2‐(β‐D ‐glucopyranosyl)‐1‐hydroxydiazene‐2‐oxide 13 yielded the 1‐methoxy compound, which was benzoylated to afford the tetra‐O‐benzoate 14 a , the structure of which was confirmed by X‐ray diffraction analysis. From the glucose O‐methyloximes 15 and 16 the N‐methoxy‐N‐nitroso‐2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosylamine 18 was prepared. The structure of this compound was confirmed by X‐ray diffraction analysis. Treatment of acetobromoglucose with cupferron furnished the 1‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosyloxy)‐2‐phenyldiazene‐2‐oxide 20 .  相似文献   

15.
A novel 1‐(cyclobutylmethyl)‐substi‐tuted imidazolidinium/benzimidazolium salts as N‐heterocyclic carbene (NHC) precursors were successfully synthesized and characterized by 1H NMR, 13C NMR, IR, and elemental analysis techniques. These compounds were easily prepared from the reaction of N‐alkyl imidazoline/N‐alkyl benzimidazole with bromomethylcyclobutane in high yields. The in situ formed catalytic system derived from the NHC precursor and Pd(OAc)2 was used in the Heck reaction between aryl halides and styrene with potassium hydroxide in water. The corresponding Heck products were obtained in good yields. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 24:77–83, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21065  相似文献   

16.
The accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004  相似文献   

17.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Aus‐Thermochemical Investigations on Systems M2O3/SeO2 — Determination of Specific Heat Capacities The experimental determination of the molar heat capacities of the ternary compounds M2SexO3+2x (M = Bi, Y, Nd, Sm) and the comparison with theoretical derivatives are described. It is shown, how the functions of the binary parent compounds M2O3 and SeO2 are verified. For the determination of the Cp‐function of SeO2 at higher temperatures an indirect method is developed.  相似文献   

19.
A convenient method for the synthesis of highly substituted isoquinolines and isoquinolinium salts by the nickel‐catalyzed cyclization of ortho‐haloketoximes and ‐ketimines, respectively, with alkynes is described. The reaction of ortho‐haloketoximes and various alkynes in the presence of [Ni(PPh3)2Br2] and zinc powder in a mixture of acetonitrile and tetrahydrofuran at 80 °C for 15 hours gave 1,3,4‐trisubstituted isoquinoline products in moderate to excellent yields and high regioselectivity. The corresponding isoquinoline N‐oxide was found to be the intermediate in the cyclization reaction pathway. In contrast, the reaction of ortho‐haloketimines and alkynes under similar catalytic conditions in tetrahydrofuran at 70 °C for two hours gave 1,2,3,4‐tetrasubstituted isoquinolinium salts in good to excellent yields.  相似文献   

20.
Trimethylsilyl, triethylsilyl, tert‐butyldimethylsilyl, and triisopropylsilyl 2‐methylprop‐2‐ene‐1‐sulfinates were prepared through (CuOTf)2?C6H6‐catalyzed sila‐ene reactions of the corresponding methallylsilanes with SO2 at 50 °C. Sterically hindered, epimerizable, and base‐sensitive alcohols gave the corresponding silyl ethers in high yields and purities at room temperature and under neutral conditions. As the byproducts of the silylation reaction (SO2+isobutylene) are volatile, the workup was simplified to solvent evaporation. The developed method can be employed for the chemo‐ and regioselective semiprotection of polyols and glycosides and for the silylation of unstable aldols. The high reactivity of the developed reagents is shown by the synthesis of sterically hindered per‐Otert‐butyldimethylsilyl‐α‐d ‐glucopyranose, the X‐ray crystallographic analysis of which is the first for a per‐O‐silylated hexopyranose. The per‐O‐silylation of polyols, hydroxy carboxylic acids, and carbohydrates with trimethylsilyl 2‐methylprop‐2‐ene‐1‐sulfinate was coupled with the GC analysis of nonvolatile polyhydroxy compounds both qualitatively and quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号