首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Raman microscopy allows a non‐destructive characterisation of inorganic and organic painting materials such as pigments and organic dyestuffs. The objectives of this study are the more recent organic pigments typically present in paintings and other art works from the 20th century. More than 20 organic synthetic pigments from different chemical classes could be identified by Raman spectroscopy using different excitation wavelengths (457.9, 476.5, 487.9, 514.5, 632.8, and 1064 nm). To evaluate the performance for real paint samples, varying paint mixtures of the Hansa Yellow pigment PY 3 and the binding medium Mowilith, a polyvinyl acetate (PVAC) compound, were characterised; PY 3 was determined at a 1 wt% level in the binder. In addition, commercial tube paints containing the quinacridone violet PV 19 were studied. The pigment was clearly identified in all of these more complex oil and acrylic paints. Finally, alizarin (PR 83) and a green copper phthalocyanine pigment (PG 7) could unambiguously be identified by Raman microscopy in the painting ‘Woman with mandolin in yellow and red’ of Max Beckmann dating 1950. The discovery of a red naphthol AS pigment by Raman spectroscopy in a sample from the ‘Three field workers’ by Georg Baselitz (1964/1965) demonstrated that in some cases complementary chromatographic methods are needed for a comprehensive identification of the organic pigments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Southern Africa has a rich heritage of hunter‐gatherer, herder and farmer rock art traditions made by using both painted and engraved techniques. Until now, there have been only a handful of studies on the chemical analysis of the paint, as all previous types of analysis required the removal of pigment samples from the sites a practice which has been avoided. Raman spectroscopy is an ideal techniques to analyse the paint non‐destructively and also offers the possibility of in situ work with portable instruments. This article describes the procedures and reports the preliminary results of the first in situ Raman spectroscopic study of rock art in South Africa (also a first worldwide), where we, first, evaluate the capability of a Raman portable instrument in very difficult conditions, second, analyse the paints in order to contribute to a better knowledge of the technology used and, third, evaluate the possible contribution of in situ analyses in conservation studies. The paintings from two different rock art sites were studied. The instrument proved to be highly suitable for in situ analyses in physically very challenging conditions. Most of the pigments and alteration products previously detected under laboratory conditions were identified, thereby giving information on both the pigments and conservation state of the paintings. A layered structure of alteration products and pigment was identified in situ for the first time by controlling the laser power, thereby obtaining the same results as in mapping experiments of cross sections of paint. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The present work exemplifies, over a mural painting from the 14th century, the advantages of an initial exhaustive research using latest generation hand‐held spectrometers (Raman mainly) in order to perform the characterization of valuable objects of cultural heritage. These in‐situ techniques (meaning on‐site and non‐destructive) are very useful to study the pigments and materials, to identify the nature and causes of some of the main sources of deterioration and to examine past repaints. In addition, the in‐situ measurements are of great importance in the selection of micro‐samples for the laboratory analyses. In this particular case, the combination of these results with the chemical imaging analyses in the laboratory (such as Raman and energy dispersive X‐ray spectrometry imaging) allowed the characterization of the mural painting, including, the identification of all restoration works applied in the past. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The non‐invasive identification of paint materials used in works of art is essential, both for preserving and restoring them, and also for understanding and verifying the history surrounding their creation. As such, the development of suitable non‐invasive techniques has received much interest in recent years. We have investigated the use of Fourier transform (FT)‐Raman spectroscopy and fibre‐optic reflectance spectroscopy (FORS), together with multivariate principal‐component analysis (PCA) techniques, in order to identify the pigment and binding materials used in made‐up samples representative of real artwork. We demonstrate that both types of spectroscopy provide complementary information which can be used to identify the pigments and binders in paint samples. We show that PCA with FT‐Raman spectra can be used to assist in the identification of oil‐based binders, and that the additional data provided by FORS spectra enables PCA on combined spectra to identify more complex proteinaceious and polysaccharide‐based binding media. The results presented here demonstrate that multivariate analyses of lead‐based paints, using data measured by FT‐Raman and FORS in conjunction, have much potential for identifying individual pigments and binders in paint samples. This provides a path towards computer‐assisted characterisation of paint materials on artwork. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe2O3 and Pb3O4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.  相似文献   

7.
The present analytical study focuses on the degradation phenomena observed in fifteenth century wall paintings of the Christ Antiphonitis monastery in Cyprus. Examination of ten fragments by means of optical microscopy (OM), scanning electron microscopy (SEM/EDS), μRaman and FTIR spectroscopy revealed smalt discolouration and loss, and transformation of red lead from orange Pb3O4 to black PbO2. The chromatic changes have affected the aesthetic effect of the paintings insofar as these pigments were extensively used. The mechanisms of smalt weathering, i.e. leaching of alkali and formation of micro-cracks, are interpreted in relation to its chemical composition and to the aggressive environmental conditions. In addition, it is assumed that red lead degradation may have been induced not only by the effect of temperature, light and humidity but also by the presence of chlorine salts. These phenomena of pigment alteration and loss underline the unsuitability of smalt and minium on wall paintings, regardless of the painting technique (fresco, fresco-secco, secco).  相似文献   

8.
《Comptes Rendus Physique》2018,19(7):543-552
Lead white, composed of a mixture of cerussite and hydrocerussite (respectively PbCO3 and Pb3(CO3)2(OH)2), is often associated in paintings with other white pigments, especially calcite. By combining in-situ analyses with paint reconstructions, we attempt to get a better understanding of the role of this addition of calcite and to investigate how artists may have used it to modify the properties of their paints. Lead-based white pigments of a Dutch 17th-century nuancier have been analysed as well as historical paintings. Two examples are given: one from a painting by Roger van der Weyden, in the 15th century, and one by Nicolas Poussin, in the 17th century, from specific zones that indicate the addition of calcite. The presence of calcite and pigments enhances both the optical and the rheological properties. Visible reflectance spectroscopy was carried out on pure paints as well as mixtures and indicated an increase in the transparency of the paint mixture in comparison to pure lead white. Rheological measurements also indicated an increase in the elastic and viscous moduli, as well as of the yield stress again in comparison to pure lead white. Calcite could thus have been used to assist in the creation of impasto effects in lead white paints.  相似文献   

9.
During the last restoration (2008–2011) of the polychrome terracotta altarpiece called Coronation of Virgin between Saints Rocco, Sebastian, Peter martyr and Antonio abbot, located in the collegiate church of S. Maria Assunta in Montecassiano (Macerata, Italy), scientific investigations were carried out to acquire detailed information about the painting technique. The identification of materials allowed a correct restoration. The altarpiece is almost entirely realized by Marco della Robbia (Fra Mattia), dates back to the first half of the XVI century and represents an interesting example of painted terracotta produced by using two different techniques: glazed polychrome terracotta and the “cold painting” technique. The characterization of the samples’ material constituents was obtained by analysing the cross-sections and the fragments by different techniques (optical, SEM-EDS and ATR-FTIR microscopy as well as GC-MS), as the real nature of a component is often difficult to assess with one single technique. The optical microscope examination of paint cross-sections shows the presence of many layers, indicating the complexity of the paint stratigraphic morphologies. The original polychromy of della Robbia’s masterpiece is constituted of cinnabar, red lake, red lead, orpiment, red ochre, lead white, lead tin yellow, green earth and raw umber. Two different types of gilding technique have been distinguished. The first one presents a glue mordant, and the second one shows an oil mordant composed by a mixture of red lead, red ochre, cinnabar and orpiment. The GC-MS analysis allowed the characterisation of linseed oil and a mixture of animal glue and egg as binding media stratigraphically located by the use of ATR-FTIR mapping microscopy. The analytical results of the painted terracotta integrated investigations show that original technique adopted is characterised by the application of pigments in an oil-binding medium directly applied on the substrates, probably treated with oil and animal glue. A large number of overpaintings above the original scheme of polychromy was found, which could be ascribed to almost three different interventions; the absence of modern pigments suggests that they could be realized long ago.  相似文献   

10.
The deterioration of art objects is normally relatively minor, controllable and attributable to environmental changes or bacterial invasion, and until now there has not been any recorded attempt to analyse an artwork that has been deliberately and significantly destroyed. The analytical problems are correspondingly larger but the potential reward from any information that can be forthcoming is thereby proportionately greater. The 17th Century Palomino frescoes on the vaulted ceiling of the Church of Sant Joan del Mercat in Valencia were largely destroyed by insurgents in the Spanish Civil War in 1936. The ensuing gunfire and a series of seven conflagrations inside the church had a devastating effect upon the artwork, and the surviving areas were also rendered unstable with respect to their detachment from the substrate. During the current restoration project being undertaken on these frescoes, an opportunity was provided for the application of several analytical techniques to secure information about the original pigment palette employed, the technology of application used by Palomino and the changes consequent upon the destruction process. Here, we report for the first time the use of analytical Raman spectroscopy, supported by scanning electron microscopy (SEM) and voltammetry of microparticles, for the combined identification of pigments, binders, substrate treatments and pigment alteration in an important, although badly damaged, wall painting for the informing of the ongoing conservation and restoration strategy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Precious corals are some of the most valuable living marine resources, growing and commercially exploited only in limited areas of the world, namely the Mediterranean Sea and the Northern Pacific Ocean. Their skeleton is formed by calcium carbonate crystallized in the form of calcite whereas their color is because of the presence of partially demethylated polyene pigments. Recently, Pacific corals have been included in the appendix II of CITES list, while Mediterranean corals are still excluded. Different Corallium species of Corallidae family (e.g. Corallium rubrum, Corallium elatius and Corallium secundum) collected from different locations of the Mediterranean Sea and the Pacific Ocean were analyzed by Raman spectroscopy for the characterization of the reddish pigment and by X‐ray fluorescence (XRF) for the determination of the chemical composition of their skeletons, in order to obtain molecular and elemental data with two relatively easy and non‐destructive techniques, which can be used quite steadily for authentication purposes. Raman analysis demonstrated the presence of specific vibrational bands useful to identify the colored pigments as a mixture involving methylated and demethylated polyenes such as carotenoids and parrodienes, characterized by the presence of ―CH3 groups along the polyene chain. The ratio between the Raman signal and fluorescence background was found to vary as a function of the macroscopic color of the coral, but Raman analyses resulted inadequate for distinguishing between corals having similar color but different origins. On the other side, XRF data provided reliable information for an appropriate separation between Pacific and Mediterranean corals at the elemental level. The results of this study will be of great relevance for the authentication and identification of the origin of corals in trade market by means of completely non‐destructive techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
X‐ray diffraction (XRD), energy dispersive spectrometry (EDS), x‐ray imaging (XRI) and scanning electron microscopy (SEM) techniques were applied to characterize and differentiate surface paintings of archeological pottery from the Aguada Ambato and Portezuelo styles (Catamarca, Argentina). Standard procedures are not always appropriate for such samples (paint layers are porous, nonplanar and discontinue). Image processing is necessary when chemical contrast is not discriminated. Soft x‐ray lines (e.g. Fe L) are more revealing because those detected come from shallower depths, clearly depicting the composition of the paint layer. These styles differ in mineralogy and chemistry suggesting that they are two distinctive entities not only on their designs but also on the materials chosen and the technology used. Aguada Portezuelo paints contain Ca (white), Fe? Mn (black), Fe? Mn? Ca (dark reddish) and Fe? Ca (reddish). The white ones correspond to gehlenite, a firing product (possible firing temperature ≥900–1000 °C); calcite and CaO occur in cases of firing temperatures <900 °C. Aguada Ambato presents difficulties for paint discrimination; only EDS spectra show slight differences. White paint from Tricolor Ambato contains mainly Pb‐phases (hatchite, anglesite, plumalsite), reddish paint resembles the paste (~Fe, hematite); reddish surfaces may have not been painted but polished. Black paint has scarce Mn–minerals. On Black Incised sherds no particular phase was identified suggesting possible organic pigments or resulting from the firing technique. The chemistry and mineralogy of the paste almost always overlap that of the paints; painted layer is irregular and partially worn by years of burial. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Optical coherence tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS–NIR (400–2,400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use OCT for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 μm are highly desirable for OCT applications in art and potentially material science in general.  相似文献   

14.
FT‐Raman spectroscopic analysis of eight pigmented specimens from an important Hindu statue group, Kali Walking on Siva, acquired in 1895 but of indeterminate age and now in the Horniman Museum, London, has revealed some interesting and unusual combinations of coloured pigments including cinnabar, minium, lapis lazuli and red ochre. Several specimens showed evidence of organic additives, which have been attributed to shellac resins commonly believed to have been used on this type of statuary. The Raman spectroscopic results confirm that the predominant black pigment on the Kali figure is lamp black or soot, in contrast to the SEM‐EDX data that suggests the origin of this pigment as from bone black or ivory black from the presence of phosphorus. An eclectic range of white pigments have been identified in this group including lead white, barytes, calcite and anhydrite; rutile and anatase found on one specimen on the jackal in this group have been ascribed to recent unrecorded restoration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The identification of organic colorants in works of art (such as dyes on textiles or organic pigments) by Raman spectroscopy is generally limited by the presence of a strong fluorescence background. In this paper, the effectiveness of minimizing fluorescence in the analysis of Cape Jasmine (Gardenia augusta L.) by dispersive Raman spectroscopy at three different excitation wavelengths (633, 785 and 1064 nm) and by surface‐enhanced Raman spectroscopy (SERS) with and without acid hydrolysis is evaluated and compared. It is shown that these vibrational techniques offer an alternative analytical approach, when, as is particularly the case of Cape Jasmine, sample preparation procedures that are routinely applied for natural organic dyes and pigments cause alterations that lead to low sensitivity in the more classical high‐performance liquid chromatography‐photodiode array (HPLC‐PDA) analytical protocols. Samples of the yellow dye G. augusta L. in the following forms were analyzed: dyed on alum mordanted wool, dyed on nonmordanted and alum mordanted silk, pigment precipitated on hydrated aluminum oxide, extract mixed with a protein binder and painted on glass, and as a water‐based glaze applied on a mock‐up of a typical Chinese wall‐painting. Raman bands at 1537, 1209 and 1165 cm−1 are identified as discriminating markers for the carotenoid colorant components crocetin and crocin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
矿物颜料的准确配色是实现文物壁画高品质修复,颜色高保真还原的关键技术。矿物颜料颗粒的粒径大小是影响矿物颜料颜色信息和光谱反射率信息的一个重要因素。准确获取壁画表面的矿物颜料光谱反射率信息,是实现颜料颗粒粒径信息识别的有效途径。但是,由于壁画表面矿物颜料部分采样点的光谱信息受到了干扰,无法与不同粒径的矿物颜料的光谱数据库准确匹配,因此也无法从采集的光谱信息中获取有效的粒径信息。针对受干扰的颜料光谱信息,提出利用比值导数法对其进行处理。把光谱信息从光谱反射率空间转换到比值导数光谱空间进行匹配,降低光谱中的干扰信息,增强矿物颜料颗粒本身的光谱特征信息。以壁画中常用的不同粒径的石青和石绿矿物颜料为实验对象,制成色块样本,以基底和白色颜料为主要影响因素,对文中提出的方法进行测试。光谱角度量的结果和光谱曲线图的匹配结果显示,在比值导数光谱空间,获得了满意的光谱匹配精度。验证了文中提出的分析方法可以解决实验中受干扰颜料光谱匹配不准确而无法获得粒径信息的问题,能够为壁画修复过程中矿物颜料的配色提供准确的粒径信息参考。  相似文献   

17.
By the method of the optical spectrsocopy of diffuse reflection in the region 0.5–5.0 eV, accelerated aging of pigment compositions with synthetic materials used in restoration of paint layers of paintings is investigated. Composition containing pigments zinc and titanium oxides (white pigments), chromium oxide and copper carbonate (green pigments), and iron oxide (brown pigment) and reinforcing materials vinyl acetate-ethylene copolymer, fluorolon F-42L, and polyvinyl alcohol are investigated. It is established that the appearance of color in pigment impregnation and subsequent heating is observed only in the compositions of reinforcing materials with white pigments and occurs as a result of heterogeneous reactions that lead to the formation in the pigment of color centers bonded by oxygen vacancies. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 518–522, July–August, 1997.  相似文献   

18.
Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists’ paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists’ tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists’ paints. Nanoprobe XRF mapping also demonstrated that artists’ tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity.  相似文献   

19.
A recently developed variant of spatially offset Raman spectroscopy (SORS) for the non‐invasive analysis of thin painted layers, micro‐SORS, has been applied, for the first time, to real objects of Cultural Heritage – namely painted sculptures and plasters. Thin layers of paint originating from multiple restoration processes often applied over many centuries have been analysed non‐destructively using micro‐SORS to depths inaccessible to, or unresolvable into separate layers, by conventional confocal Raman microscopy. The concept has been demonstrated on several artistic artefacts of historical significance originating from Italy and dating from the medieval to the 18th century. The technique extends the depth applicability of Raman spectroscopy and with its inherently high chemical specificity that expands the portfolio of existing non‐destructive analytical tools in Cultural Heritage permitting to avoid cross‐sectional analysis often necessitated with this type of samples with conventional Raman microscopy. Currently, the method is non‐invasive only for artworks that can be placed under Raman microscope although there is a prospect for its use in a mobile system with largely removed restrictions on sample dimensions. © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.  相似文献   

20.
In this work, the possible contribution of Raman spectroscopy in forensic science is evaluated, more specifically for the analysis of automotive paint samples. Spectra from paint flakes as well as from cross sections were examined, in order to identify not only the pigments but also binders and extenders in all paint layers. Moreover, the possibility of distinguishing paint samples from different cars was evaluated to assess the use of vibrational spectroscopic techniques in the investigation of a hit-and-run accident. The presence of rutile and extenders, such as calcite and barium sulphate, could be demonstrated by their characteristic Raman bands. However, the identification of the binder by Raman spectroscopy was hampered: only with additional information from IR analysis could most of the bands in the spectrum be assigned to molecular vibrations of the binders. In contrast, organic pigments, having very distinctive and well-resolved characteristic bands, could easily be identified by comparing the spectra from the basecoat of the sample with spectra from a reference database. Because of these characteristic bands, the basecoat seems to provide the best spectra to distinguish paint samples. Moreover, some paints can also be distinguished by the absence or presence of the bands from calcium carbonate and barium sulphate in the primer surfacer. When recording spectra from paint flakes, Raman bands from the spectra of the clearcoat as well as from the basecoat are obtained. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号