首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sound attenuation and dispersion in saturated gas–vapor–droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air–water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.  相似文献   

3.
The absorption of sound in homogeneous dilute emulsions due to the viscosity of the components of the medium is theoretically investigated. Deformation (capillary) oscillations of the emulsion droplets are taken into account. The viscous wavelength is assumed to be small compared to the droplet size, and the latter is assumed to be small compared to the wavelength of sound. Resonance phenomena related to capillary oscillations are considered. The resonance contribution to the attenuation coefficient of a plane sound wave propagating in the emulsion is analyzed.  相似文献   

4.
管束穿孔板的管腔耦合共振吸声机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
苏玉  梅中建  吕亚东  程晓斌 《声学学报》2021,46(6):1202-1211
为了揭示管束穿孔板共振吸声结构的吸声机理,利用热黏性条件下基于有限元算法的管束穿孔板仿真模型,研究了平面声波正入射条件下,管束穿孔板内部声场分布特征,并利用阻抗管对吸声系数的理论仿真结果进行了试验验证.结果表明,管束穿孔板在低频主要靠腔体共振吸声,在高频主要靠管共振吸声,管束穿孔板整体呈现出较为明显的管腔耦合共振吸声特征。管束穿孔板共振时管中声强和质点法向振速较大,高频次吸声峰频点处管中和腔中均有驻波形成,频率越高驻波数量越多.管束穿孔板的耦合共振受到管长、腔深、穿孔率和管内径等参数变化的影响,管长对高频耦合共振的影响最大,管长增大使高频主吸声峰频点移向低频,并使相邻主吸声峰之间的间距减小.  相似文献   

5.
Microperforated panel (MPP) absorbers have been widely used in noise reduction and are regarded as a promising alternative to the traditional porous materials. However, the absorption bandwidth of a single-layer MPP is insufficient to compete with the porous materials. In order to improve the sound absorption ability of the single-layer MPP, MPP mounted with Helmholtz resonators (MPPHR) is introduced. Based on the MPP, Helmholtz resonators theory and electro-acoustical equivalent circuit principle, sound absorption properties of MPPHR are studied. Simulation and experimental results show that MPPHR have two peak frequencies and one anti-resonant frequency. The low-frequency peak is dependent on the Helmholtz resonators, while the high frequency peak is close to the peak of the single-layer MPP. The low-frequency sound absorption peaks move to low frequency with the neck length and the volume of Helmholtz resonators increasing. The high-frequency sound absorption peaks move to high frequency with the volume of Helmholtz resonators cavity increasing. Multiple Helmholtz resonator parallel MPP structure can provide more sound absorption than single MPPHR at low frequency range due to the introduction of more additional sound absorption peaks.  相似文献   

6.
Experimental data on the long-range propagation of explosion-generated sound signals in the shallow-water northern part of the Sea of Okhotsk are analyzed. The propagation conditions in this region are characterized by a fully-developed underwater sound channel that captures the rays crossing the channel axis at angles lower than 3°. The experimental data reveal a small increase in the duration of the sound signal in proportion to the range with the proportionality factor lower than 0.00025 s/km. The frequency dependence of attenuation exhibits a pronounced minimum whose position on the frequency axis is close to the critical frequency of the first “water” mode (about 160 Hz). The increase in the attenuation coefficient at lower frequencies is confirmed by the field calculations performed with the wave-field computer code and is explained by the sound energy loss in the bottom sediments. At frequencies higher than 200 Hz, as in the Baltic Sea, the most probable reason for the attenuation to exceed the absorption in sea water is sound scattering by internal waves.  相似文献   

7.
针对单层微穿孔板的低频吸声问题提出了微穿孔板复合板型声学超材料结构。将板型声学超材料置入微穿孔板结构的背腔内部实现结构复合。实验结果表明:在相同背腔厚度下,复合结构的吸声性能整体优于单层微穿孔板结构,其中复合结构的吸声曲线从396~892 Hz均大于0.6,在453 Hz处吸声系数达到0.972。利用有限元方法对复合结构进行了仿真,仿真计算的吸声曲线与实验吸声曲线的趋势基本相同,同时发现低频吸声主要由板型声学超材料与声波相互作用贡献。板型声学超材料的吸声峰值的对应频率处,其等效动态质量密度从正变负。在复合结构内部的微穿孔板和板型声学超材料存在相互耦合作用,使得复合结构的第一峰值发生微小偏移。增加板型声学超材料的质量块重量可以使第一吸声峰值向低频移动;保持总背腔厚度不变,增加板型声学超材料的子腔厚度,也可以使第一吸声峰向低频移动。  相似文献   

8.
The data obtained from a set of experiments on the long-range, low-frequency (<5 kHz) sound propagation in the central region of the Baltic Sea are analyzed. The experiments were carried out in the summer season, with a fully developed underwater sound channel. Experimental data on the sound attenuation are presented. A significant excess of the attenuation coefficients over the predicted absorption coefficients is obtained. The quantitative estimates indicate that the sound scattering by internal waves is the most probable mechanism responsible for the observed excessive sound attenuation. The frequency dependence of the attenuation coefficient exhibits a minimum whose position on the frequency axis at the beginning of the summer season noticeably differs from that at the end of summer. The analysis of the propagation conditions allows one to relate the position of this minimum to the critical frequency of the water modes. In addition to the intensity parameters of the sound field, the formation of the time structure of explosion-generated signals propagating in the Baltic underwater sound channel is considered for the case of the sound propagation along the 360-km path crossing the Gotland Hollow. The specific role of the bottom waves in the time structure formation at short distances from the sound source is demonstrated.  相似文献   

9.
The temperature dependences of the effective sound attenuation near the phase transition in the triglycine sulfate crystal are calculated for powerful acoustic waves with a strain of an order of 10?5. It is demonstrated that the generation of harmonics and their absorption can appreciably contribute to the measured absorption coefficient at the basic frequency owing to a critical increase in the third-order elastic moduli. The calculated data are compared with the experiment.  相似文献   

10.
利用数值模型研究了完整深海声道中会聚区的水平偏移特性,根据折射定律和Lloyd镜效应推导了会聚区发生水平偏移时临界频率的表达式。研究结果表明:当声波频率低于临界频率时,会聚区的主导模态与频率相关,随着声波频率减小会聚区会向靠近声源的方向水平移动,同时传播损失明显增大,当声波频率大于临界频率时,会聚区的主导模态近似与频率无关,会聚区的位置和传播损失大小不会随频率改变而发生明显变化,声源深度不同时,临界频率也不同。通过临界频率可以确定在特定声源深度下,会聚区发生水平偏移时需要满足的频率条件,利用临界频率与声源深度之间的关系,可以被动估计深海浅层目标的深度。  相似文献   

11.
吸声型薄膜声学超材料低频宽带吸声性能研究*   总被引:1,自引:1,他引:0       下载免费PDF全文
本文根据吸声型薄膜声学超材料的吸声机理,在传统的吸声型薄膜声学超材料结构的基础上引入质量非对称结构, 优化了不同厚度质量片的排布方式,并根据优化结果制备了能够实现低频宽带吸声效果的薄膜声学超材料样品。对其进行声学实验的测试结果显示,样品在 100-1000Hz 频率范围内的平均吸声系数达 0.25,并在 250-800Hz 频率范围内出现了多个共振吸收峰,且实验测得的吸声系数曲线与仿真曲线的趋势有较高的一致性。因此该样品实现了低频宽带吸声。  相似文献   

12.
声弛豫频率是声吸收谱峰值点的频率,包含可激发气体成分、环境温度和压强信息.利用声弛豫频率线性正比气体压强的特性,提出一种通过两频点声吸收系数和声速测量值计算声弛豫频率,并通过查表方式合成气体压强的算法.算法的声弛豫频率测量误差具有随声测量值误差线性变换的特性,且当两频点的声吸收测量误差相等时,压强的合成误差为零.对于一定温度下的甲烷及其混合气体,仿真计算证明算法的有效性和声测量误差的稳健性.提供一种简单、稳健性好、可实时连续在线检测可激发气体腔体压强的声学方法.  相似文献   

13.
The divergence of signals along ecological gradients may lead to speciation. The current research tests the hypothesis that variation in sound absorption selects for divergence in acoustic signals along climatic gradients, which has implications for understanding not only diversification, but also how organisms may respond to climate change. Because sound absorption varies with temperature, humidity, and the frequency of sound, individuals or species may vary signal structure with changes in climate over space or time. In particular, signals of lower frequency, narrower bandwidth, and longer duration should be more detectable in environments with high sound absorption. Using both North American wood warblers (Parulidae) and bats of the American Southwest, this work found evidence of associations between signal structure and sound absorption. Warbler species with higher mean absorption across their range were more likely to have narrow bandwidth songs. Bat species found in higher absorption habitats were more likely to have lower frequency echolocation calls. In addition, bat species changed echolocation call structure across seasons, using longer duration, lower frequency calls in the higher absorption rainy season. These results suggest that signals may diverge along climatic gradients due to variation in sound absorption, although the effects of absorption are modest.  相似文献   

14.
为了消除或减少低频噪声,该文 提出了一种低频通风超材料吸声体,该吸声体由对称的折叠通道结构组成,具有深度亚波长、高通风空间占比和低频高效吸声的特性.通过传递矩阵方法、有限元模拟和四麦克风实验法,揭示了对称折叠通道结构通风吸声的物理机制.首先在理论上分析单个吸声体的通风吸声性能并进行了仿真模拟,在共振频率423 Hz附近,吸声系数大于0.9,通风空间占比高达40%.吸声单体的共振频率可通过改变折叠通道的长度来灵活调控,组合多个不同共振频率的吸声单体可以拓宽吸声体的有效吸声带宽.由四个吸声单体组合的通风吸声体可实现314-366 Hz频率范围内的高效声吸收(吸声系数大于0.8),且通风空间占比达到35%,而结构厚度仅为314 Hz时波长的1/10.该低频通风吸声体具有结构简单、结构强度高和容易制造等特点,在低频通风降噪领域有着潜在的应用前景.  相似文献   

15.
朱庆  白鸿柏  路纯红 《应用声学》2016,35(5):457-463
为了使声波在低声压级、低频带达到理想的吸收效果,本文提出了金属片镶嵌微缝薄膜结构理论模型,并分析了该模型的吸声机理。首先将该结构的力学模型看作多自由度系统,构建振动微分方程,得到了金属片镶嵌薄膜的分布位置与每段薄膜弹性系数之间的关系。并在此基础上分析了激励频率与固有频率之间的关系,得出基频对该结构吸声效果的影响。然后利用有限元软件对该结构的模态振型和声阻抗进行了分析,得到了镶嵌在微缝薄膜上的金属片与声波的耦合形式。最后通过试验对该结构的吸声特性进行了验证,结果表明:吸收峰值受镶嵌位置影响较小,平均吸声系数变化不大,一阶固有频率会受镶嵌位置的改变而改变。  相似文献   

16.
基于水声超材料吸声机理和多层平行介质平面波理论,建立局域共振型水声超材料结构,通过COMSOL进行建模计算,研究该结构的吸声性能机理,此外为了验证钢背衬的隔声性能,在该水声超材料结构基础上添加一层0.005m厚的钢背衬进行仿真对比。研究结果表明,在频段为200Hz-4000Hz时,水声超材料声学性能较好,吸声性能整体较优,且添加钢背衬的水声超材料隔声性能较优,甚至在某频率点达到15dB的隔声差值;此外通过位移场图进一步揭示水声超材料的吸声机理,发现水声超材料结构的位移场和钢背衬都对吸声性能会产生影响,钢背衬通过影响共振吸收来影响吸声性能,而位移场则通过位移幅度大小影响吸声性能。  相似文献   

17.
Helmholtz resonators with sound absorption materials filling the neck may have an improved sound absorption capacity. In this work, parallel perforated ceramics with different perforation diameters were installed into the neck of a Helmholtz resonator to improve its acoustic impedance to simultaneously achieve a better acoustic absorption coefficient and a wider absorption bandwidth. An experimental system was built to investigate the effect of the perforation diameters on the sound absorption performance of the resonator. It is found that nonlinear effects near the resonance frequency affect the resonator?s neck mouth impedance and further its sound absorption performance significantly. For frequency range 50–500 Hz, a model of the neck mouth impedance is developed based on a revised Forchheimer relationship. The experimental results are in good agreement with the theoretical model.  相似文献   

18.
Fabricating of metal foams with desired morphological parameters including pore size, porosity and pore opening is possible now using sintering technology. Thus, if it is possible to determine the morphology of metal foam to absorb sound at a given frequency, and then fabricate it through sintering, it is expected to have optimized metal foams for the best sound absorption. Theoretical sound absorption models such as Lu model describe the relationship between morphological parameters and the sound absorption coefficient. In this study, the Lu model was used to optimize the morphological parameters of Aluminum metal foam for the best sound absorption coefficient. For this purpose, the Lu model was numerically solved using written codes in MATLAB software. After validating the proposed codes with benchmark data, the genetic algorithm (GA) was applied to optimize the affecting morphological parameters on the sound absorption coefficient. The optimization was carried out for the thicknesses of 5 mm to 40 mm at the sound frequency range of 250 Hz–8000 Hz. The optimized parameters ranged from 50% to 95% for porosity, 0.1 mm to 4.5 mm for pore size, and 0.07 mm to 0.6 mm for pore opening size. The result of this study was applied to fabricate the desired Aluminum metal foams for the best sound absorption. The novel approach applied in this study, is expected to be successfully applied in for best sound absorption in desired frequencies.  相似文献   

19.
The study of acoustic metamaterials, also known as locally resonant sonic materials, has recently focused on the topic of underwater sound absorption. The high absorption occurs only within a narrow frequency band around the locally resonant frequency. Nevertheless, this problem can be addressed through a combination of several acoustic metamaterial layers that have different resonant frequencies. In this paper, an optimization scheme, a genetic and a general nonlinear constrained algorithm, is utilized to enhance the low-frequency underwater sound absorption of an acoustic metamaterial slab with several layers. Both the physical and structural parameters of the acoustic metamaterial slab are optimized to enlarge the absorption band. In addition, the sound absorption mechanism of the acoustic metamaterial slab is also analyzed. The result shows that each layer is found to oscillate as a nearly independent unit at its corresponding resonant frequency. The theoretical and experimental results both demonstrate that the optimized metamaterial slab can achieve a broadband (800–2500 Hz) absorption of underwater sound, which is a helpful guidance on the design of anechoic coatings.  相似文献   

20.
陈昕  赵静  陈志菲  侯宏  鲍明  杨建华 《应用声学》2023,42(6):1207-1214
使用不同声源利用矢量传声器对毛毡材料进行现场吸声系数测试,研究了不同背景下不同声源的抗噪能力。矢量传声器可以同时测得声压和质点振速信号,进而可计算得到阻抗,利用自由空间和材料表面的阻抗可计算得到材料的吸声系数。在此次实验中,使用不同声源分别在无干扰和有一白噪声干扰源的两种情况下进行测试。结果表明,使用对数扫频脉冲和巴特沃斯脉冲测试所得的吸声系数曲线更平滑,说明脉冲声可以有效降低环境反射的影响,在高噪声背景下使用对数扫频脉冲测试所得的结果基本没有受到背景噪声的影响,说明对数扫频脉冲的抗噪能力更强。因此,使用对数扫频脉冲作为声源进行测试可有效减弱环境反射和背景噪声的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号