首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On the basis of the quantum-mechanical equations of motion and the statistical assumption that dynamical correlations present in the initial state may be ignored, a kinetic equation for a dilute neutrino system is derived. If the system is sufficiently uniform in space this equation reduces to the relativistic Boltzmann equation for massless particles with a quantum-mechanical transition probability.  相似文献   

2.
It is shown that the macroscopic current density and energy-momentum density of a neutrino-antineutrino system may be expressed in terms of moments of two scalar Wigner functions, provided that the system is homogeneous on the scale of the de Broglie wavelength of the particles. The equilibrium form of these Wigner functions is established.  相似文献   

3.
The transport equation for a neutrino system derived previously is extended to include binary collisions involving electrons, positrons and antineutrinos. The transition amplitudes for these collision processes are specified in terms of an effective Hamiltonian density following from the Weinberg-Salam theory. The resulting equation incorporates the reactive processes ee ? νν and exhibits the electron and positron spins explicitly. It is shown to be form invariant under Lorentz transformations.  相似文献   

4.
For (eve) and (evμ) binary mixtures the transport coefficients are evaluated as functions of the temperature and composition of the system. The particles are assumed to interact according to the Weinberg-Salam model. Results for the two mixtures are compared, and are contrasted to corresponding results obtained on the basis of a mean free path model.  相似文献   

5.
For a dilute and nondegenerate relativistic spin-12 system two kinds of Wigner functions are defined: one has sixteen spinor components and the other four spin components. Their relationship is established. Statistical expressions for the current density, the energy-momentum density and the spin density are obtained in terms of both kinds of Wigner functions. The transformation properties of the latter under Lorentz transformations are discussed.  相似文献   

6.
The nonequilibrium density matrix method is employed to derive a master equation for the averaged state populations of an open quantum system subjected to an external high frequency stochastic field. It is shown that if the characteristic time τstoch of the stochastic process is much lower than the characteristic time τsteady of the establishment of the system steady state populations, then on the time scale Δt ~ τsteady, the evolution of the system populations can be described by the coarse-grained kinetic equations with the averaged transition rates. As an example, the exact averaging is carried out for the dichotomous Markov process of the kangaroo type.  相似文献   

7.
Using the Radon integral transform of the relativistic kinetic equation for a spin-zero particle, we obtain the classical and quantum evolution equations for the tomographic probability density (tomogram) describing the states of the particle in both the classical and quantum pictures. The Green functions (propagators) of the evolution equations of a free particle are constructed. The examples of the evolution of Gaussian tomogram is considered.  相似文献   

8.
A method of construction of a Markoffian solution of the Liouville equation for nonequilibrium systems, leading to closed kinetic equations, is described. The method is illustrated on the basis of an electron-phonon system; higher orders in the interaction are taken into account.  相似文献   

9.
Pierre-Henri Chavanis 《Physica A》2008,387(23):5716-5740
We developed a theory of fluctuations for Brownian systems with weak long-range interactions. For these systems, there exists a critical point separating a homogeneous phase from an inhomogeneous phase. Starting from the stochastic Smoluchowski equation governing the evolution of the fluctuating density field of Brownian particles, we determine the expression of the correlation function of the density fluctuations around a spatially homogeneous equilibrium distribution. In the stable regime, we find that the temporal correlation function of the Fourier components of density fluctuations decays exponentially rapidly, with the same rate as the one characterizing the damping of a perturbation governed by the deterministic mean field Smoluchowski equation (without noise). On the other hand, the amplitude of the spatial correlation function in Fourier space diverges at the critical point T=Tc (or at the instability threshold k=km) implying that the mean field approximation breaks down close to the critical point, and that the phase transition from the homogeneous phase to the inhomogeneous phase occurs sooner. By contrast, the correlations of the velocity fluctuations remain finite at the critical point (or at the instability threshold). We give explicit examples for the Brownian Mean Field (BMF) model and for Brownian particles interacting via the gravitational potential and via the attractive Yukawa potential. We also introduce a stochastic model of chemotaxis for bacterial populations generalizing the deterministic mean field Keller-Segel model by taking into account fluctuations and memory effects.  相似文献   

10.
11.
The kinetic and antikinetic equations are obtained for the single-particle Wigner function in the context of the method of Green's time-temperature functions for an inhomogeneous system of weakly interacting particles situated in a time-dependent electric field. The kinetic equation is derived here from the equation of motion for Green's function, satisfying the causality condition.  相似文献   

12.
The solution of the dynamic equation is strongly degenerate for systems with an infinite number of degrees of freedom. A causality principle is stated, whereby the particular solution of the dynamic equation, which is at the same time a solution of the kinetic equation, can be selected. The principle is applied here to the multitime formalism of correlation functions. A basis is thus obtained for the method of Green's time-temperature functions in the theory of kinetic equations.The author thanks all those who have discussed the topics in this paper with him, particularly V. L. Bonch-Bruevich, D.A. Kirzhnits, V.M. Fain, E.S. Fradkin, and A. S. Shekhter.  相似文献   

13.
14.
A set of quantum hydrodynamic equations are derived from the moments of the electrostatic mean-field Wigner kinetic equation. No assumptions are made on the particular local equilibrium or on the statistical ensemble wave functions. Quantum diffraction effects appear explicitly only in the transport equation for the heat flux triad, which is the third-order moment of the Wigner pseudo-distribution. The general linear dispersion relation is derived, from which a quantum modified Bohm-Gross relation is recovered in the long wave-length limit. Nonlinear, traveling wave solutions are numerically found in the one-dimensional case. The results shed light on the relation between quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and quantum fluid transport around given equilibrium distribution functions.  相似文献   

15.
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schrödinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.  相似文献   

16.
17.
A correlation function approach is developed to treat non-equilibrium phenomena of quantum crystals at low frequency and long wavelength within the renormalized harmonic approximation (RHA). The derivation of the transport equations is carried out by studying the hierarchy of equations of motion for the retarded Green's functions of a pure, nonprimitive, nonionic, anharmonic lattice. Using a factorization technique to take into account the most important terms due to the particle fluctuations and the leading contributions to the hydrodynamic singularities of the phonon self-energy, we find a differential equation for the displacement field and a generalized transport equation for the phonon gas. The microscopic RHA expressions for the local temperature, the local heat density and the energy current are derived; the quasiparticle parameters (elastic constants, generalized Grüneisen parameters, quasiparticle interaction) entering the equations of motion are shown to be consistent with the RHA. In the hydrodynamic regime the general equations are reduced to two coupled differential equations for the lattice deformations and for the local temperature. Then only the displacement-displacement, the displacement-energy density and the energy density-energy density correlation functions show macroscopic fluctuations; for these functions thermodynamical sum-rules are derived.  相似文献   

18.
《Annals of Physics》1985,160(1):1-53
A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion-nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation or zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (“plasma frequency”) and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号