首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The valence band electronic structures of Mn- and/or Fe-doped In2O3, i.e., In2O3:Mn, In2O3:Fe, and In2O3:(Mn, Fe), are investigated by photoemission yield measurements. Significant changes are observed in the threshold energy of photoemission, depending on the doped magnetic ions, which indicates that an additional occupied band appears above the top of the valence band of In2O3 owing to doping with Mn and/or Fe ions. It is confirmed that the order of the threshold energies of photoemission, EPET, is EPET(In2O3:Mn)<EPET(In2O3:(Mn, Fe))<EPET(In2O3:Fe)<EPET(In2O3). To gain a better understanding of these results, first-principles molecular orbital calculations are also carried out, which successfully explain the observed changes in the photoemission threshold energies.  相似文献   

2.
The silicates Ca3Sc2Si3O12, Ca3Y2Si3O12 and Ca3Lu2Si3O12, both undoped and doped with Pr3+ ions, have been synthesized by solid-state reaction at high temperature. The luminescence spectroscopy and the excited state dynamics of the materials have been studied upon VUV and X-ray excitation using synchrotron radiation. All doped samples have shown efficient 5d-4f emission upon direct VUV excitation of 5d levels, but only Ca3Sc2Si3O12:Pr3+ shows luminescence upon interband VUV or X-ray excitation. The VUV excited emission spectra of Ca3Y2Si3O12:Pr3+ and Ca3Lu2Si3O12:Pr3+ show features attributed to emission from two distinct sites accommodating the Pr3+ dopant. The decay kinetics of the Pr3+ 5d-4f emission in Ca3Sc2Si3O12:Pr3+ upon VUV excitation across the band gap are characterized by decay times in the range 25-28 ns with no significant rise after the excitation pulse. They appear to be faster upon X-ray irradiation than for VUV excitation. Weak afterglow components are attributed to defect luminescence.  相似文献   

3.
4.
3-mol% Y2O3 and 0.3 to 3-mol % Cr2O3 co-doped ZrO2 nanopowders were synthesized using co-precipitation technique and investigated by terms of X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Structural analysis shows no significant impact of chromium on powders structure except of presence of small amount of m-phase. Surface analysis reveals segregation of yttrium and chromium atoms to the surface along with surface enrichment by oxygen that can be attributed to residual water. Chromium surface atoms present in three oxidation states with catalytically active Cr2+ sites possibly controlling m-phase appearance through lattice distortion.  相似文献   

5.
The densities of valence states of amorphous As2S3 and Sb2S3 have been investigated by means of X-ray photoemission and ultraviolet photoemission spectroscopy. The spectra are interpreted on the basis of existing band structure calculations.  相似文献   

6.
CuInSe2/In2O3 structures were formed by depositing CuInSe2 films by stepwise flash evaporation onto In2O3 films, which were grown by DC reactive sputtering of In target in presence of (Ar+O2) gas mixture. Phase purity of the CuInSe2 and In2O3 films was confirmed by Transmission Electron Microscopy (TEM) studies. X-ray diffraction (XRD) results on CuInSe2/In2O3/glass structures showed sharp peaks corresponding to (112) plane of CuInSe2 and (222) plane of In2O3. Rutherford Backscattering Spectrometry (RBS) investigations were carried out on CuInSe2/In2O3/Si structures in order to characterize the interface between In2O3 and CuInSe2. The results show that the CuInSe2 films were near stoichoimetric and In2O3 films had oxygen deficient composition. CuInSe2/In2O3 interface was found to include a ∼20 nm thick region consisting of copper, indium and oxygen. Also, the In2O3/Si interface showed the formation of ∼20 nm thick region consisting of silicon, indium and oxygen. The results are explained on the basis of diffusion/reaction taking place at the respective interfaces.  相似文献   

7.
The infrared spectra, indexed X-ray powder diffraction patterns, magnetic susceptibilities between 80 and 300 K, and electron paramagnetic resonance spectra at 80 and 300 K are reported for Cr2O5 and Cr3O8. The results indicate that both oxides are Cr3+/Cr6+ mixed-valence compounds which contain CrO6 octahedra and CrO4 tetrahedra in different ratios. The valence formula for Cr2O5 is Cr3+2Cr6+4O15 and that of Cr3O8 is Cr3+2Cr6+7O24. The X-ray powder data for Cr2O5 and Cr3O8 could be indexed on the basis of a monoclinic unit cell (a = 12.01(2), b = 8.52(1), c = 9.39(1) A? β = 92.0(1)°) and an orthorhombic unit cell (a = 12.01(7), b = 36.60(7) and c = 3.82(1) A?), respectively.  相似文献   

8.
The influence of some impurities on the conduction properties of Cr2O3 and Fe2O3 are examined and contrasted. A mechanism is proposed to account for the effect of Ti in Cr2O3.  相似文献   

9.
Nanoparticulate Y2O3:Eu2O3 with a small, uniform particle size and a well-defined composition was synthesized using a low temperature microwave plasma process. The structural evolution and the luminescence properties were studied in different states of annealing and Eu2O3 addition using X-ray diffraction, transmission electron microscopy, and UV-photoluminescence spectroscopy. As synthesized, the samples were amorphous and showed only weak luminescence. Subsequent annealing steps from 500°C to 800°C lead to the formation and growth of cubic Y2O3:Eu2O3 nanocrystals (5–20 nm) and a concomitant strong increase of the luminescence yield already at small grain sizes in the range of 10 nm. No self-quenching effects were observed up to 11 mol% Eu2O 3.  相似文献   

10.
We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In2O3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In3+ ions. The magnetization measurements show that the host In2O3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.  相似文献   

11.
The effect of particle size on the formation of vacancy-ordered superstructure in γ-Fe2O3 powders has been investigated by using X-ray, Mössbauer and chemical analyses. Powders of γ-Fe2O3 with different average particle size were prepared by chemical precipitation and subsequent heat-treatment. The X-ray diffraction intensity of the superlattice lines decreases with the particle size of γ-Fe2O3 and finally disappears at a particle-size between 300-175 Å, possibly around 200 Å. Therefore ordering of the cation vacancies in ultrafine γ-Fe2O3 particles is ruled out. Although the vacancies do not form an ordered structure, they do exclusively occupy B-sites.  相似文献   

12.
The influence of La2O3 and Tm2O3 co-doping on the dielectric properties and the temperature stability of BaTiO3 was investigated. BaTiO3 ceramics were prepared with the compositional formula of (Ba1−xLax)(Ti1-x/4−yTmy)O3. La2O3 and Tm2O3 co-doping in BaTiO3 mainly had effects on an increase in the dielectric constant and the temperature stability, respectively. The increase of La2O3 concentration and the decrease of Tm2O3 concentration in BaTiO3 resulted in a decrease of lattice parameter and tetragonality because La3+ ion substituting for Ba site is smaller than Ba2+ ion and Tm3+ ion substituting for Ti site is larger than Ti4+ ion. With the increase of La2O3 and the decrease of Tm2O3, the dielectric constant of BaTiO3 was enhanced in spite of the reduction of tetragonality. P-E hysteresis measurements revealed that this phenomenon was based on the improvement of remanent polarization with the increase of La2O3 concentration. The introduction of excess Tm2O3 in BaTiO3 suppressed the grain growth and BaTiO3 ceramics showed higher temperature stability due to the stable tetragonal structure and the small grain size with the increase of Tm2O3 concentration.  相似文献   

13.
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.  相似文献   

14.
Y2O3 thin films were grown on silicon (1 0 0) substrates by pulsed-laser deposition at different substrate temperatures and O2 pressures. The structure and composition of films are studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Y2O3 thin films deposited in vacuum strongly oriented their [1 1 1] axis of the cubic structure and the film quality depended on the substrate temperature. The magnitude of O2 pressure obviously influences the film structure and quality. Due to the silicon diffusion and interface reaction during the deposition, yttrium silicate and SiO2 were formed. The strong relationship between composition and growth condition was discussed.  相似文献   

15.
Laser ablation coupled to mass quadrupole spectrometry (LAMQS) has been used to prepare thin films of aluminum oxide deposited on Si substrates starting from commercial Al2O3 polycrystalline targets. X-ray photoemission (XPS) and reflection electron energy loss spectroscopy (REELS) have allowed the investigation of the electronic properties of the produced films. In particular, it was found that the Al/O atomic ratio assumes a value very near to 0.7 (stoichiometric ratio) only for films deposited normally with respect to the target surface, while films grown at larger deposition angles are more rich in oxygen content.The composition, the mass density, the optical energy gap, the complex dielectric function and refraction index of the films have been calculated and compared with the results obtained from our starting target material and with the literature. The morphology of the deposited samples has been analyzed by the AFM technique.  相似文献   

16.
A semiempirical atom superposition and electron delocalization molecular orbital analysis of the bonding and electronic structure of MoO3, oxygen deficient MoO3, and the α, β, and δ phases of Bi2O3 has been made. It is found that both small — e.g. MoO6 — and large — e.g. Mo6O24 — clusters are useful models for cation electronic structure within the theory used. From the calculations, an interpretation is given for all available optical and photoemission data for the oxides. The color, conductivity, and new photoemission peak of oxygen-deficient MoO3 conducting bronzes are found to be due to the addition of electrons to the lowest of three Mo 5d bands which are empty in MoO3. Weakly allowed d ← d transitions in the red are responsible for the color. Strongly allowed Mo 5d ← O 2p charge transfer excitations are responsible for the optical absorption above 3.2 eV. For the bismuth oxides, three occupied bands are found showing strong Bi 6s, 6p, 6d and O 2p hybridization. These bands have been seen experimentally. The highest band surprisingly has Bi 6p lone-pair character which is explained in terms of the relative Bi 6s and 6p and O 2p ionization potentials using perturbation theory. Rather similar electronic structures are found for the three phases despite their varying cation coordinations and structures. A charge transfer optical absorption edge at ~ 2.6 eV for the β form agrees well with observations reported in the literature, and similar edges should occur for the other phases. The cubic δ form has an unusual low-lying band suggesting absorption in the infrared. Our results provide insight into the surface properties of these oxides.  相似文献   

17.
采用射频磁控溅射和N2气氛退火处理制备了多晶Ga2O3薄膜和Cu掺杂Ga2O3薄膜.用X射线衍射仪、紫外-可见分光光度计、荧光光谱仪对Ga2O3薄膜和Cu掺杂Ga2O3薄膜的结构和光学性能进行了表征.结果表明,Cu掺杂后Ga2O3薄膜的结晶质量变差,透过率明显降低,吸收率增加,光学带隙减小.本征Ga2O3薄膜在紫外、蓝光和绿光出现了发光带,Cu掺杂后紫外和蓝光发射增强,且在475 nm 处出现了一个新的发光峰.  相似文献   

18.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of Cr2O3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS), differential thermal analysis and conventional spectroscopic techniques. The X-ray diffraction and scanning electron microscopic studies reveal the presence of lithium phosphate, calcium phosphate and chromium phosphate (complexes of Cr3+, Cr5+ and Cr6+ ions) crystal phases. The study on DTA suggests that the crystallization is predominantly due to the surface crystallization when the concentration of nucleating agent Cr2O3 is around 0.8 mol%. The IR and Raman spectral studies of these samples indicate that the sample crystallized with 0.8 mol% Cr2O3 is more compact and possesses high rigidity due to the presence of chromium ions largely in tetrahedral positions.  相似文献   

19.
Structural analysis of the synthesized lead iron tantalate, PbFe1/2Ta1/2O3 (PFT) is performed by the refinement of the X-ray diffraction data at room temperature using the GSAS code. Energy dispersive X-ray spectrometry analysis is done to find out the chemical composition. The electronic structure of PFT is calculated by the first principles full potential linearized augmented plane wave method. The spin polarized density of states shows the insulating nature. The magnetic moment of 4.3 μB per Fe ion is obtained from the electronic structure calculation using the GGA+U method and compared with the available experimental data. The electronic structure of the PFT is verified by X-ray photoemission spectroscopy. The dielectric spectroscopy is applied to investigate the electrical properties of PFT in the frequency range from 100 Hz to 1 MHz and in the temperature range from 183 to 253 K. The frequency dependent electrical data are analyzed by conductivity formalism. The relaxation mechanism is explained using the Cole-Cole approach.  相似文献   

20.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号