首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The protonation and ZnII/CuII complexation constants of tripodal polyamine ligand N1‐(2‐aminoethyl)‐N1‐(1H‐imidazol‐4‐ylmethyl)‐ethane‐1,2‐diamine (HL) were determined by potentiometric titration. Three new compounds, i.e. [H3(HL)](ClO4)3 ( 5 ), [Zn(HL)Cl](ClO4) ( 6 ) and {[Zn(L)](ClO4)}n ( 7 ) were obtained by reactions of HL · 4HCl with Zn(ClO4)2 · 6H2O under different reaction pH, and they were compared with the corresponding CuII complexes reported previously. The results indicate that the reaction pH and metal ions have remarkable influence on the formation and structure of the complexes.  相似文献   

2.
Four novel metal complexes [Cd(L)Cl](BF4)·H2O ( 1 ), [Cd(L)Br]2[CdBr4]·2H2O ( 2 ), [Cu(L)Br]Br ( 3 ), and [Cu(L)](NO3)2 ( 4 ) were prepared by the reactions of ligand N1‐(2‐aminoethyl)‐N1‐(2‐imidazolethyl)‐ethane‐1,2‐diamine (L) with metal salts under different reaction conditions. All of these complexes exhibit 1D chains, but different structures. The results showed that the pH value of the reaction solution and counter ions have remarkable impact on the structure of the complexes. Furthermore, complexes 1 and 2 represent fluorescence properties in the solid state at room temperature.  相似文献   

3.
New copper(II) complexes of asymmetrical tetradentate Schiff bases containing pyrazine have been prepared and thoroughly characterised by elemental analysis, IR and electronic spectroscopy, mass spectrometry and magnetic measurements. Two alternative methods were used in the isolation of the complexes: template synthesis in the preparation of Cu(SalDpyz)ClO4 (HSalDPyz = derived from the condensation of salicylaldehyde, acetylpyrazine and 1,2‐ethylendiamine, 2‐methyl‐1,2‐propylendiamine, 1,2‐phenylendiamine) and direct interaction between copper perchlorate and the corresponding Schiff base, as in the isolation of Cu(AEPyz)(ClO4) (HAEPyz = (Z)‐4‐[2‐{[2‐{[(E)‐1‐(pyrazinyl)ethylidene]amino} ethyl)amino]‐3‐penten‐2‐one)]. [Cu(SalEn)(py)(OClO3)][Cu(SalEn)(py)]ClO4 ( 1 ) (SalEn = 4‐(2‐hydroxyphenyl)‐3‐aza‐3‐buten‐1‐amino, py = pyridine), metal precursor in the preparation of Cu(SalEnpyz)(ClO4) (HSalEnpyz = 2‐{E(2‐{[(E)‐1‐(2‐pyrazinyl)ethylidene]amino}ethyl)imino]methyl}phenol), was crystallographically characterised. The crystal structure of [Cu(AEpyz)]ClO4 ( 2 ) is also reported.  相似文献   

4.
The syntheses, structures and properties of the complexes [CdBr2( L )2·4H2O]n [ L = 2,6‐dimethyl‐3,5‐dicyano‐4‐(4‐pyridyl)‐1,4‐dihydropyridine], 1 and [Cd(SCN)2( L )2(H2O)]n, 2 , are reported. In polymeric complexes 1 — 2 , the L ligands bridge the metal centers through the pyrimidyl and cyano nitrogen atoms forming 1‐D double‐stranded chain and zigzag chain, respectively. The L ligands in complex 1 act as κ1, κ1‐bidentate bridging ligand, whereas the L ligands in complex 2 act as κ1‐monodentae and κ1, κ1‐bidentate bridging ligand. The molecules of these complexes are interlinked through various weak interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π→π* transitions.  相似文献   

5.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

6.
Five new coordination polymers, namely, [Ni2(L)2(4, 4′‐bipy)3)] · H2O]n ( 1 ), [Ni2(L)2(O) (bpp)2]n ( 2 ), [Zn(L)(bib)0.5]n ( 3 ), [Zn(L)(PyBIm)]n ( 4 ), and [Zn3(L)2(OH)(im)]n ( 5 ) [H2L = benzophenone‐2, 4′‐dicarboxylic acid, 4, 4′‐bipy = 4, 4′‐bipyridine, bpp = 1, 3‐bis(4‐pyridyl)propane, PyBIm = 2‐(4‐pyridyl)benzimidazole, and im = imidazole] were synthesized under hydrothermal conditions. Structure determination revealed that compound 1 is a 3D network and exhibits a 4‐connected metal‐organic framework with (42.63.8) topology, whereas compounds 2 , 3 , 4 , and 5 are two‐dimensional layer structures. In compounds 2 – 4 , dinuclear metal clusters are formed through carboxylic groups. In compound 5 , trinuclear metal clusters are formed through μ3‐OH and carboxylic groups. The carboxylic groups exhibit three coordination modes in compounds 1 – 5 : monodentately, bidentate‐chelating, and bis‐monodentately. Furthermore, the luminescent properties for compounds 3 , 4 , and 5 were investigated.  相似文献   

7.
New palladium(II) complexes, [Pd(PPh3)L] ( 2 ) and [Pd(AsPh3)L] ( 3 ), were synthesized using 4‐hydroxybenzoic acid (3‐ethoxy‐2‐hydroxybenzylidene)hydrazide ( 1 ) ligand (H2L), and characterized using various physicochemical techniques. The molecular structures of 2 and 3 were determined using single‐crystal X‐ray diffraction, which reveals a square planar geometry around the palladium(II) metal ion. In vitro DNA binding studies were conducted using UV–visible absorption spectroscopy, emission spectroscopy, cyclic voltammetry and viscosity measurements, which suggest that the metal complexes act as efficient DNA binders. The interaction of ligand H2L and complexes 2 and 3 with bovine serum albumin (BSA) was investigated using UV–visible and fluorescence spectroscopies. Absorption and emission spectral studies indicate that complexes 2 and 3 interact with BSA protein more strongly than the parent ligand. The free radical scavenging potential of all the synthesised compounds ( 1 – 3 ) was also investigated under in vitro conditions. In addition, the in vitro cytotoxicity of the complexes to tumour cells lines (HeLa and MCF‐7) was examined using the MTT assay method.  相似文献   

8.
The complexes [Pt2L2(μ-dppm)](ClO4)2 (1) and {[Pt2L2(μ-dppm)Li(CH3CN)2](ClO4)3}n (2), where HL is 6-[4-(diethoxyphosphorylmethyl)phenyl]-2,2′-bipyridinyl and dppm is bis(diphenylphosphino)methane, have been synthesized and characterized. In complex 1 the platinum(Ⅱ) center adopts a distorted square planar coordination geometry. The polymer 2 exhibits a "stairstep" configuration with one-dimensional Pt(Ⅱ)N^N^CPO- Li(Ⅰ)-OPC^N^ NPt(Ⅱ) mixed-metal units which are linked through dppm. Both complexes have metal-metal interaction with Pt- Pt distances of 3.325(2) and 3.1432(9) A, respectively, and display strong metal-metal-to-ligand charge-transfer (MMLCT) triplet state emission. The density-functional-theory calculation was used to interpret the absorption spectra of the complexes.  相似文献   

9.
Four novel 2D complexes M2(Hptim)2(HBTC)2 [M = Co ( 1 ), Cd ( 2 ), Zn ( 3 ), Mn ( 4 ); Hptim = 2,4,5‐tri(4‐pyridyl)‐imidazole; HBTC2– = Benzene‐1,3,5‐tricarboxylic acid] were synthesized under solvothermal conditions. The four complexes are isomorphous and present a unique structure with a 1D ladder of [Co2(HBTC)2]n. The 2D network structure of 1 is achieved through bridging Hptim groups, which coordinate to the metal atoms of two adjacent 1D [Co2(HBTC)2]n ladders. Magnetic measurements reveal that dominant antiferromagnetic coupling was observed in compounds 1 and 4 . Compounds 2 and 3 both exhibit strong fluorescent emissions in the solid state and may be suitable candidates for fluorescent materials.  相似文献   

10.
The preparation and characterization of three metal(II) chlorido complexes with 1,2‐di(1H‐tetrazol‐1‐yl)ethane (dte) ( 1 ) as ligand is presented. The complexes have the following formula: [CoCl2(μ‐dte)(dte)2]n ( 2 ), [CuCl2(μ‐dte)2]n ( 3 ), and [Cd(μ‐Cl)2(μ‐dte)]n ( 4 ). Single crystal X‐ray diffraction of all three metal complexes was performed and the structures are discussed. All three central metal atoms are connected to polynuclear structures by the μ‐bridging ligand. Cobalt and copper are connected to one‐dimensional chains. The central cadmium(II) atoms are additionally connected by the chloride anions to a two‐dimensional network. Further, the cobalt(II) complex represents a special case with two terminal dte ligands.  相似文献   

11.
The coordination polymers {[Zn2(HIDC)2(tib)] · H2O}n ( 1 ) and {[Cd(HIDC)(tib)] · H2O}n ( 2 ) [H3IDC = 1H‐imidazole‐4, 5‐dicarboxylic acid, tib = 1, 3,5,‐tris(1‐imidazolyl) benzene] were obtained under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analysis and further characterized by elemental analysis and IR spectroscopy. Complex 1 exhibits a two‐dimensional layer structure with a 63‐hcb topology. Complex 2 has a three‐dimensional structure with a pcu topology. It is shown that the carboxylate ligand can bear diverse structures regulated by metal ions. Additionally, the photoluminescence behaviors of complexes 1 and 2 are discussed.  相似文献   

12.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

13.
Poly[4‐amino‐2,6‐pyrimidinodithiocarbamate] was prepared from the reaction of 2‐mercapto‐4,6‐diaminopyrimidine with carbon disulfide, followed by condensation through the removal of H2S gas. Five polymer–metal complexes of manganese, ferrous, ferric, zinc and mercury were then prepared. The polymer–metal complexes are investigated by elemental analyses, ultraviolet Fourier transform infrared and magnetic susceptibility. The DC electrical conductivity variation with the temperature in the region 298–498 K of the five polymer–metal complexes was determined. Doping with 5% ZnCl2 increased the electrical conductivity of the polymer at all temperatures investigated. All the polymer–metal complexes showed an increase in conductivity with an increase in temperature, which is a typical semiconductor behavior. The proposed structure of the complexes is (MLX2·mH2O)n. All the polymer–metal complexes are thermally stable, are insoluble in common organic solvents and have high melting points. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

15.
Ligand L (4‐(7‐nitrobenzo[1,2,5]oxadiazole‐4‐yl)‐1,7‐dimethyl‐1,4,7,10‐tetra‐azacyclododecane) is a versatile fluorescent sensor useful for CuII, ZnII and CdII metal detection, as a building block of fluorescent metallo‐receptor for halide detection, and as an organelle marker inside live cells. Ligand L undergoes a chelation‐enhanced fluorescence (CHEF) effect upon metal coordination in acetonitrile solution. In all three complexes investigated the metal cation is coordinatively unsaturated; thus, it can bind secondary ligands as anionic species. The crystal structure of [Zn L Cl](ClO4) is discussed. CuII and ZnII complexes are quenched upon halide interaction, whereas the [Cd L ]2+ species behaves as an OFF–ON sensor for halide anions in acetonitrile solution. The mechanism of the fluorescence response in the presence of the anion depends on the nature of the metal ion employed and has been studied by spectroscopic methods, such as NMR spectroscopy, UV/Vis and fluorescence techniques and by computational methods. Subcellular localization experiments performed on HeLa cells show that L mainly localizes in spot‐like structures in a polarized portion of the cytosol that is occupied by the Golgi apparatus to give a green fluorescence signal.  相似文献   

16.
Abstract. Two metal‐organic coordination polymers [Co(bmb)(btc)0.5]n( 1 ) and {[Zn(bmb)0.5(btc)0.5(H2O)] · 0.5bmb · H2O}n ( 2 ) [H4btc = benzene‐1, 2, 4, 5‐tetracarboxylic acid, bmb = 1, 4‐bis(2‐methylbenzimidazol‐1‐ylmethyl) benzene] were prepared under hydrothermal conditions. Single‐crystal X‐ray diffraction indicates that both complexes have a 2D framework structure with (4 · 62) (42 · 62 · 82) topology. Interestingly, the hydrogen bonds in 2 form a fascinating meso‐helix. The catalytic activity of 1 for oxidative coupling of 2, 6‐dimethylphenol (DMP) and the photoluminescence properties of 2 were investigated. Furthermore, the complexes were investigated by IR spectroscopy and thermogravimetric analysis.  相似文献   

17.
The reaction of (Z)‐2‐[amino(pyridine‐2‐yl)methylene]hydrazonecarbothioamide (HAm4DH) with Mn(ClO4)2·6H2O afforded different mononuclear or polynuclear manganese(II) complexes, the nature of which apparently depended on the solvent used. For example, in ethanol a compound of formula [Mn(HAm4DH)2](ClO4)2 ( 1 ) was obtained, where HAm4DH coordinates as a common tridentate NNS donor, but the [Mn(bpy)2(NCS)2] complex ( 2 ) (bpy = 2,2'‐bipyridine) has also been obtained – probably due to C–N bond cleavage of the thiosemicarbazone. Nevertheless, in a basic aqueous medium [Mn(bpy)3](ClO4)2·0.5bpy ( 3 ) is formed and there is structural evidence for chemical transformations of the thiosemicarbazone promoted by MnII. Thus, the sulfate in {[Mn(py)4Mn(py)2(H2O)2(μ‐SO4)2]·4H2O}n ( 4 ) or sulfate and cyclooctasulfur in [Mn(pta)2(pdo)]4(SO4)2·4H2O·S8] ( 5 ), where pta is 3‐(pyridin‐2‐yl)‐1,2,4‐triazol‐5‐amine and pdo is (2R,4R/2S,4S)‐pentane‐2,4‐diolato, arise from the desulfuration and oxidation of the thiosemicarbazone ligand. The structures of complexes 2 to 5 were established by single‐crystal X‐ray diffraction. The formation of pta is the result of the oxidative cyclization of HAm4DH. In the polynuclear complex 4 , the sulfate acts as an (O,O') bridge between alternating Mn(py)2(H2O)2 and Mn(py)4 centers. In the tetranuclear complex 5 , pta acts as a bischelating ligand through the N‐pyridine and N‐triazole, and pdo act as a bridge between two manganese atoms. It is also noteworthy that in complexes 4 and 5 hydrogen bonds give rise to different self‐assembly behaviour that leads to complicated supramolecular structures.  相似文献   

18.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

19.
A series of bis‐chelate pseudooctahedral mononuclear coordination complexes of manganese with the chromophore [MnN4O2]n+ (n=0, 1) have been generated in all three principal oxidation states of this transition‐metal center under ambient conditions by utilizing a readily tunable, versatile phenolic pyridylhydrazone ligand system (i.e., H2(3,5‐R1,R2)‐L; L=ligand). Strategic combinations of the nature and position of a variety of substituent groups afforded selective, spontaneous stabilization of multiple spin states of the manganese center, which, upon close crystallographic scrutiny, appears to be in part due to the occurrence or absence of hydrogen‐bonding interactions that involve the phenolate/phenolic oxygen atom. The divalent complexes are isolable in two forms, namely, molecular [MnII{H(3,5‐R1,R2)‐L}2] and ionic [MnII{H2(3,5‐R1,R2)‐L}{H(3,5‐R1,R2)‐L}]ClO4, with the latter complex converting easily into the former complex on deprotonation. Accessibility of the higher‐valent states is achievable only when the phenolate oxygen atom is sterically hindered from participation in hydrogen bonding. The [MnIII{H(3,5‐tBu2)‐L}2]ClO4 complex is the first example of a hydrazone‐based MnIII complex to exhibit spin crossover. Formation of the tetravalent complexes [MnIV{(3,5‐R1,R2)‐L}2] (R1=tBu, R2=H; R1=R2=tBu) necessitates base‐assisted abstraction of the hydrazinic proton.  相似文献   

20.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号