首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel metallo‐organically templated pentaborate with layered framework, [Cd(TETA)(C2H3O2)][B5O6(OH)4] ( 1 ) (TETA = triethylenetramine), was synthesized under mild solvothermal conditions. The structure was determined by single‐crystal X‐ray diffraction and further characterized by FT‐IR spectroscopy, elemental analysis, thermogravimetric analysis, and photoluminescence spectroscopy. The structure consists of an isolated polyborate anion [B5O6(OH)4] and the cadmium complex cation of [Cd(TETA)(C2H3O2)]+, which contains both organic amine and organic acid ligands. The [B5O6(OH)4] units are connected together by hydrogen bonds, and a 2D sheet‐like framework with rectangle‐like 12‐membered boron rings are formed. The [Cd(TETA)(C2H3O2)]+ complex cations are located in the free space between the layers and connect the adjacent borate layers through hydrogen bonds to form a three‐dimensional supramolecular network. The luminescent properties of the compound were studied for the first time in the series of metallo‐organically‐templated pentaborates, and a blue luminescence occurs with an emission maximum at 468 nm upon excitation at 397 nm.  相似文献   

2.
A pair of novel azide‐bridged polynuclear copper(II) complexes, [CuL(μ1,1‐N3)]n ( 1 ) and [Cu4L2(CH3COO)21,1‐N3)4] ( 2 ) (L = 4‐chloro‐2‐[(2‐dimethylaminoethylimino)methyl]phenolate), have been obtained from the same Schiff base ligand and an identical synthetic procedure using anions of the metal salts as the only independent variable. Complex 1 was synthesized using copper(II) nitrate, while complex 2 was synthesized using the copper(II) acetate as the salt. Both of the complexes show novel supramolecular structures in their crystals as elucidated by X‐ray analyses. The polynuclear complex 1 contains [CuL(μ1,1‐N3)]n units as the building blocks, crystallizes in the Pbca space group. The tetra‐nuclear complex 2 contains [Cu4L2(CH3COO)21,1‐N3)4] units as the building blocks, crystallizes in the space group.  相似文献   

3.
Two cadmium(II) and two zinc(II) coordination complexes with diverse structural motifs, [Cd2(HL)I3H2O] · H2O ( 1 ), [Cd2(H2L)2(H2O)4] · 2SO4 · 14H2O ( 2 ), [Zn3(L′)2(H2O)6] · 4H2O · 2(NO3) ( 3 ), and [Zn3L'2(H2O)2Cl2] · H2O ( 4 ) [H2L = 1,1‐bis(5‐(pyrid‐2‐yl)‐1,2,4‐triazol‐3‐yl)methane; H2L′ = 1,1‐bis(5‐(pyrid‐2‐yl)‐1,2,4‐triazol‐3‐yl)methanone] were synthesized through a hydrothermal method. These coordination complexes were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction (PXRD), FT‐IR spectroscopy, and photo‐luminescent experiments. Single crystal structural analysis revealed that 1 – 4 belong to polynuclear coordination compounds. PXRD analysis of 1 – 4 unambiguously confirmed the purity of the as‐synthesized coordination compounds. It is the first time to synthesize coordination compounds based on H2L′, which reacted from the original material H2L through in‐situ hydrothermal conditions. In addition, photo‐luminescent experiments revealed that 1 – 4 have real‐time sensing effects for benzaldehyde through fluorescence quenching. For 1 – 4 , the photo‐luminescent quenching effect for benzaldehyde was also compared and the coordination complexes 3 and 4 based on H2L′ have higher photo‐luminescent quenching effect than compounds 1 and 2 .  相似文献   

4.
《中国化学会会志》2017,64(7):727-731
Mn‐[4‐chlorophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 ([Mn‐4CSMP ]Cl2) as nano‐Schiff base complex was prepared and fully characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermal gravimetric analysis, derivative thermogravimetry, scanning electron microscopy, energy‐dispersive X‐ray analysis, and UV–vis spectroscopy. The reactivity of nano‐[Mn‐4CSMP ]Cl2 as a catalyst was tested on the tandem cyclocondensation–Knoevenagel condensation–Michael reaction between phenylhydrazine and ethyl acetoacetate with various aromatic aldehydes to give 4,4′‐(arylmethylene)‐bis‐(3‐methyl‐1‐phenyl‐1H ‐pyrazol‐5‐ol)s derivatives.  相似文献   

5.
The reaction of 4‐Amino‐6‐methyl‐1, 2, 4‐triazine‐3(2H)‐thione‐5‐one (AMTTO, 1 ) with silver nitrate in methanol led to the dimeric complex {[(AMTTO)2Ag]NO3}2 ( 2 ). 2 was characterized by elemental analyses and IR spectroscopy as well as by X‐ray structure analysis. Crystal data for 2 at ?80 °C: crystal system orthorhombic, space group P212121 with a = 1043.6(1), b = 1329.6(1), c = 2358.4(1) pm, Z = 8 and R1 = 0.037. The cation possesses a highly distorted linear coordination sphere in the solid state.  相似文献   

6.
The novel complex [K(18-C-6)]2[Cd(mnt)2][18-C-6-18-crown-6,nmt=1,2-dicyanoethene-1,2-dithiolate,C2S2-(CN)2^2-] was synthesized and characterized by elemental analysis,IR spectrum and X-ray diffraction analysis.The complex displays two-dimensional network structure of [K(18-C-6)] complex segments and [Cd(nmt)2] complex segment bridged by S-K-S,S-K-N and N-K-N interactions between adjacent[K(18-C-6)] and [Cd(mnt)2]units.  相似文献   

7.
Three position isomers 1,2‐, 1,3‐, 1,4‐phenylenediacetate and 1,4‐bis(benzimidazol‐1‐ylmethyl)benzene (bmb) were used to assembly cadmium(II) coordination polymers, [Cd(bmb)(1,2‐phda)]n ( 1 ), {Cd(bmb)(1,3‐phda)] · 0.5(bmb)}n ( 2 ), and [Cd(bmb)0.5(1,4‐phda)]n ( 3 ), which are characterized by elemental analyses, infrared spectra (IR), thermogravimetric analysis (TGA) and single‐crystal X‐ray diffraction. Single crystal structure analysis shows that complex 1 is a two‐dimensional wave‐like layer network. Complex 2 features a (3,5)‐connected three‐dimensional frameworks with (42.6)(42.65.83) topology, whereas complex 3 shows a (4,4)‐connected three‐dimensional (4.64.7)(42.62.82) topology. The structural versatility reveals that a significant structure‐directing effect of the position of the acetate groups during self‐assembly of these coordination polymers. Moreover, luminescent properties and thermal stabilities of three complexes were discussed in detail.  相似文献   

8.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

9.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

10.
A supramolecular approach that uses hydrogen‐bonding interaction as a driving force to accomplish exceptional self‐sorting in the formation of imine‐based covalent organic cages is discussed. Utilizing the dynamic covalent chemistry approach from three geometrically similar dialdehydes ( A , B , and D ) and the flexible triamine tris(2‐aminoethyl)amine ( X ), three new [3+2] self‐assembled nanoscopic organic cages have been synthesized and fully characterized by various techniques. When a complex mixture of the dialdehydes and triamine X was subjected to reaction, it was found that only dialdehyde B (which has OH groups for H‐bonding) reacted to form the corresponding cage B3X2 selectively. Surprisingly, the same reaction in the absence of aldehyde B yielded a mixture of products. Theoretical and experimental investigations are in complete agreement that the presence of the hydroxyl moiety adjacent to the aldehyde functionality in B is responsible for the selective formation of cage B3X2 from a complex reaction mixture. This spectacular selection was further analyzed by transforming a nonpreferred (non‐hydroxy) cage into a preferred (hydroxy) cage B3X2 by treating the former with aldehyde B . The role of the H‐bond in partner selection in a mixture of two dialdehydes and two amines has also been established. Moreover, an example of unconventional imine bond metathesis in organic cage‐to‐cage transformation is reported.  相似文献   

11.
In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N‐hydroxypyridine‐2‐carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two‐dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) Å, markedly shorter than that of 6.452 (1) Åvia the nitrate bridge. The two‐dimensional structure is fishscale‐like, and can be described as pyaoxH2‐bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three‐dimensional network.  相似文献   

12.
Quinoline‐8‐oxy‐acetate acid (8‐qoacH) reacts with M(II) (M=Pb and Cd) to give rise to two coordination complexes [Pb(8‐qoac)2] ( 1 ) and [Cd(8‐qoac)(bdc)0.5(H2O)2] ( 2 ) under hydrothermal conditions. They are characterized by single‐crystal X‐ray diffraction, IR, elemental, thermal analyses and luminescent analysis. The Pb metal centers connect the 8‐qoac anions to form a 1D linear chain in 1 . In 2 , two symmetrical [Cd(8‐qoac)(H2O)2] are bridged by a 1,4‐bdc2? to generate a coordination unit [Cd(8‐qoac)(bdc)0.5(H2O)2], and all the units are further connected to a 2D supramolecular layer‐like structure via hydrogen bonds. TG analyses indicate that 1 exhibits higher thermostability than 2 . Fluorescence spectrum of compound 2 in solid state shows strong fluorescence property.  相似文献   

13.
The hydrothermal synthesis of the novel complex poly[aqua(μ4‐benzene‐1,2,3‐tricarboxylato)[μ2‐4,4′‐(hydrazine‐1,2‐diylidenedimethanylylidene)dipyridine](μ3‐hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene‐1,2,3‐tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one‐dimensional chain. Adjacent one‐dimensional chains are connected by the N,N′‐bis[(pyridin‐4‐yl)methylidene]hydrazine ligand, forming a two‐dimensional layered structure. Adjacent layers are stacked to generate a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.  相似文献   

14.
Solvothermal reactions of 1‐cyanobenzoimidazole, NaN3, and hydrated MIICl2 (M = Mn, Zn, Cu) in a mixture of EtOH/H2O in the presence of NH4Cl afforded a mononuclear complex [Mn(L1)2(H2O)4] ( 1 ), a 3D polymer [Zn(L1)(OH)]n ( 2 ), and a linear polymer {[Cu(Bim)]}n ( 3 ), respectively, where the ligand L1 is formed in‐situ from [3+2] dipolar cycloaddition of N3 with nitrile and the ligand Bim is in‐situ formed from C–N bond cleavage of 1‐cyanobenzoimidazole. (L1 = 5‐benzoimidazoyltetrazolate, Bim = benzoimidazole). All the compounds were characterized by IR spectroscopy, elemental analysis, and thermo‐gravimetric analysis (TGA), and their structures were determined by X‐ray crystallography. The solid state luminescent properties of 2 and 3 were also investigated at room temperature.  相似文献   

15.
The β‐diketonate derivative ligand [H2L = 6‐(3‐hydroxy‐1‐oxo‐3‐pyrryl‐2‐propen‐1‐yl)‐2‐pyridinecarboxylic acid] and its zinc(II) coordination complexes, [Zn(H2L)Cl2] · (EtOH)(H2O) ( 1 ) and [Zn4(L)4(H2O)2] · 5H2O ( 2 ), were prepared and characterized by elemental analysis, IR and NMR spectroscopy, and single‐crystal X‐ray diffraction. Complex 1 is a mononuclear structure. Complex 2 is a [2 × 2] grid tetranuclear structure. The luminescent properties of the free ligand H2L and complexes 1 and 2 in methanol solution were studied.  相似文献   

16.
A cadmium–thiocyanate complex, poly[(1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κ4N)octakis‐μ2‐thiocyanato‐κ8N:S8S:N‐tricadmium(II)], [Cd3(C8H14N3)2(NCS)8]n, was synthesized by the reaction of 1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, there are two independent types of CdII cation (one on a centre of inversion and one in a general position) and both are in distorted octahedral coordination environments, coordinated by N and S atoms from different ligands. Neighbouring CdII cations are linked together by thiocyanate bridges to form a two‐dimensional network. Hydrogen‐bonding interactions are involved in the formation of a three‐dimensional supramolecular network.  相似文献   

17.
In the complex diaquatetranitrato[5‐(pyridinium‐4‐yl)‐10,15,20‐tri‐4‐pyridylporphyrin]lanthanum(III) 1,2‐dichlorobenzene trisolvate, [La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2, the lanthanum ion is coordinated to one of the peripheral pyridyl substituents of the porphyrin entity. Units of the complex are interlinked to one another in three dimensions by a network of O—H...N, O—H...O and N—H...O hydrogen bonds between the water ligands, nitrate ions, and pyridyl and pyridinium groups of adjacent species. This is the first structural report of an exocyclic complex of the tetrapyridylporphyrin ligand with any lanthanide ion and its self‐assembly into a three‐dimensional architecture sustained by hydrogen bonds.  相似文献   

18.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

19.
Three zinc(II) ions in combination with two units of enantiopure [3+3] triphenolic Schiff‐base macrocycles 1 , 2 , 3 , or 4 form cage‐like chiral complexes. The formation of these complexes is accompanied by the enantioselective self‐recognition of chiral macrocyclic units. The X‐ray crystal structures of these trinuclear complexes show hollow metal–organic molecules. In some crystal forms, these barrel‐shaped complexes are arranged in a window‐to‐window fashion, which results in the formation of 1D channels and a combination of both intrinsic and extrinsic porosity. The microporous nature of the [Zn3 1 2] complex is reflected in its N2, Ar, H2, and CO2 adsorption properties. The N2 and Ar adsorption isotherms show pressure‐gating behavior, which is without precedent for any noncovalent porous material. A comparison of the structures of the [Zn3 1 2] and [Zn3 3 2] complexes with that of the free macrocycle H3 1 reveals a striking structural similarity. In H3 1 , two macrocyclic units are stitched together by hydrogen bonds to form a cage very similar to that formed by two macrocyclic units stitched together by ZnII ions. This structural similarity is manifested also by the gas adsorption properties of the free H3 1 macrocycle. Recrystallization of [Zn3 1 2] in the presence of racemic 2‐butanol resulted in the enantioselective binding of (S)‐2‐butanol inside the cage through the coordination to one of the ZnII ions.  相似文献   

20.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号