首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural-based plasticizers and biopolymer films: A review   总被引:2,自引:0,他引:2  
In recent years, much attention has been focused on research to replace petroleum-based commodity plastics, in a cost-effective manner, with biodegradable materials offering competitive mechanical properties. Biopolymers have been considered as the most promising materials for this purpose. However, they generally present poor mechanical properties regarding processability and end-use application, since the fragility and brittleness exhibited during thermoformation can limit their potential for application. In order to overcome this problem, plasticizers are added to provide the necessary workability to biopolymers. This class of products became more visible when biodegradable additives and plasticizers also became the focus of material scientists. The use of natural and/or biodegradable plasticizers, with low toxicity and good compatibility with several plastics, resins, rubber and elastomers in substitution of conventional plasticizers, such as phthalates and other synthetic conventional plasticizers attracted the market along with the increasing worldwide trend towards use of biopolymers. Here we discuss the main results and developments in natural plasticizer/synthetic and biopolymer-based films during the last decades.  相似文献   

2.
This review is about the reactive plasticizer. Plasticizers are small molecules with low molecular weight. These compounds typically have an esteric structure. The plasticizers reduce the glass transition temperature, and the viscosity of the polymer also enhances the flexibility and processability of polymer materials. The main problem of these additives is that, over time, they migrate from the polymeric matrix and exude to the surface of polymeric matrix. As a result, the physical and mechanical properties of the polymer are affected. Various strategies, such as increasing molecular weight of plasticizer, selection of oligomeric structure for plasticizer, and adding nanoparticles of minerals, have been investigated to reduce and eliminate migration. An approach that has recently been of great interest to researchers is the use of reactive plasticizers. In this approach, plasticizers covalently bond to the polymeric chains and prevent migration.  相似文献   

3.
The new generation of magnetic elastomers represents a new type of composites, consisting of small (mainly nano and micron‐sized) magnetic particles dispersed in a highly elastic polymeric matrix. The combination of polymers with magnetic materials displays novel and often enhanced properties. Highly elastic magnetic composites are quite new and understanding of the behavior of these materials depending on the composition, external conditions, and the synthesis processes is still missing. Thus, the aim of this work is the study of fundamental principles governing the preparation of these materials as well as their structure and elastic properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Sorption experiments are commonly used to determine the equilibrium and kinetics of mass-transfer processes of vapors in polymeric materials. Electrogravimetry is recognized as a powerful technique. A discussion of the standard theoretical approach to determine solubility and diffusion coefficients is presented. The reduced mathematical expression commonly used for calculations of D values is discussed. A consistency test to check for common deviations caused by the experimental complexity is discussed and resolved.The sorption of hexanol and ethyl caproate into a metallocene polyethylene and an ionomer was measured by electrogravimetry. Transport was characterized through the solubility and the diffusion coefficients. The formalism presented was used in these experiments and is commented upon.  相似文献   

5.
Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress‐strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x‐ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol‐ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.  相似文献   

6.
Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress‐strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x‐ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol‐ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.  相似文献   

7.
While graphene or graphene oxide can make significant improvements in the properties of a wide variety of polymeric materials, their incorporation can be challenged by incompatibility with the polymeric matrix. The modification of graphene oxide with silicones or silanes using the Piers‐Rubinsztajn reaction improves dispersibility in nonpolar materials, including organic solvents and silicone pre‐elastomers. A high loading (up to 10 wt %) of modified graphene oxide in silicone elastomers could be achieved, which resulted in enhanced mechanical performance and reduced gas permeability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2379–2385  相似文献   

8.
Supercritical fluid extraction (SFE) has been demonstrated to be a useful tool in the determination of additives in polymeric materials. This paper describes the determination of some citrates and benzoates in poly(vinyl chloride) blended with 33–34% of plasticizer using off-line SFE followed by gas chromatography. Experimental factors affecting SFE have been studied by gravimetric analysis, followed by analysis of the extracts using a gas chromatograph equipped with a flame ionization detector. The extraction process is governed by the solubility of the plasticizers in the supercritical fluid or by their diffusion through the polymer matrix, which depend on the pressure and temperature used. Maximum extraction (>99%) is obtained at pressures and temperatures higher than 40 MPa and 80 °C, respectively. Due to purge losses, the collection efficiency of plasticizers into a liquid solvent ranges from 85 to 90%. The applicability of the SFE method is demonstrated using real samples and comparing the results with those obtained by conventional Soxhlet extraction.  相似文献   

9.
Kinetics of curing of structurally different epoxy oligomers (ED-20 and PDI-3AK resins) in a mixture with other low-molecular-weight epoxy oligomers and plasticizers by the eutectic mixture of aromatic amines UP-0638/1 is studied by the DSC method. The activation energy and the heats of curing reactions are determined. It is established that crosslinked epoxy polymers cured at moderate temperatures (40–80°C) are strong moisture-resistant compositions with different mechanical characteristics. Plasicized elastomers based on PDI-3AK resin with glass transition temperatures of ?78 and ?95°C are freeze-and heat-resistant materials.  相似文献   

10.
Thermoplastic elastomers are multi-functional polymeric materials that generally possess the processability of thermoplastics and the elasticity of vulcanized rubber. Intrinsic thermoplastic elastomers include microphase-separated block and segmented copolymers containing a soft (low-Tg) species. Recent achievements regarding thermoplastic elastomer block and segmented copolymers in the past year have improved the current understanding of (i) complex nanostructures in unary and multicomponent systems and (ii) the thermally-activated sphere→cylinder and cylinder→gyroid order–order transitions. The use of these materials in organogel, electro-responsive and nanocomposite applications illustrates the diversity and future potential of these technologically important materials.  相似文献   

11.
General conclusions are made based on the results of experimental and theoretical investigations of the decomposition kinetics of various polymeric materials in a wide range of heating rates. It was found that the decomposition process of the investigated materials proceeds within confined temperature intervals. Kinetic equations are suggested to describe the thermal decomposition processes of polymers and natural coals, based on the characteristic revealed.  相似文献   

12.
Kinetic Study of the Distribution of Electrically Neutral Ionophores between a Solvent Polymeric Membrane and an Aqueous Phase The kinetic behaviour of a series of ligands in the transfer from a solvent polymeric membrane into a stirred aqueous phase was investigated and compared with theoretical kinetic models. It was found that the transfer of ligands with low lipophilicity was controlled by the diffusion in the membrane phase, and that of ligands with high lipophilicity was controlled by the exchange reaction at the phase boundary and/or the diffusion through the unstirred Nernst diffusion layer. The diffusion coefficients in the membrane decrease drastically on increase of the content of the polymer in the membrane and are nearly independent of the size and lipophilicity of the ligand, whereas the overall transfer coefficient through the boudary region does not depend on the polymer content but decreases with increasing lipophilicity of the ionophore.  相似文献   

13.
In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film–matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.  相似文献   

14.
Thermoplastics and thermoplastic elastomers compose roughly 80 percent of all polymeric materials manufactured today and play an important role in numerous sectors of modern society. While the effects of molecular weight and dispersity (Ð) on the tensile and rheological properties of these materials are well-known, only recent studies have evidenced the profound influence of the shape of the molecular weight distribution (MWD) on polymer properties. This development is largely due to the emergence of new synthetic strategies to control higher moments of the MWD. In this Perspective, we describe recent advancements by our group in understanding the effect of MWD shape on the mechanical and rheological properties of thermoplastics and thermoplastic elastomers. We highlight means to exploit MWD shape for improved processability and performance and discuss future directions in this field.  相似文献   

15.
This critical review surveys the development of the structural and electrochemical knowledge of the TCAQ moiety since its discovery, nearly two decades ago, until the present. Additionally, recent advances in the chemistry and functionalization of this versatile building block are highlighted, with special emphasis on the strategies devoted to the preparation of donor-acceptor molecular and polymeric materials. The applications of TCAQ-based materials in materials science as electrical conductors, molecular rectifiers, in photoinduced electron transfer processes, optoelectronic devices and as electrochiroptical materials are also reviewed (89 references).  相似文献   

16.
This paper presents thermal properties of organic pigments such as zinc phthalocyanine and chloroaluminum phthalocyanine that were synthesized according to the literature data. These pigments were characterized by means of elementary analysis and measurements of particle size. They were then incorporated into butadiene-styrene rubber and butadiene-acrylonitrile rubber. The elastomeric mixtures were cross-linked by two methods: using organic peroxide or sulfur. The effect of phthalocyanines on the thermal properties, flammability, and fire hazard of the pigmented polymeric materials obtained as well as on their mechanical properties and cross-linking degree was studied. It has been shown that the phthalocyanine pigments not only impart appropriate esthetic values to the final goods but also increase their thermal stability and considerably reduce the flammability and fire hazard of elastomers and even make possible materials that are self-extinguishing under air atmosphere. These pigments also have a beneficial influence on the degree of cross-linking of the elastomers investigated and their mechanical properties.  相似文献   

17.
A phenomenological model is developed to describe the isotropic-smectic-C phase transition in liquid-crystalline side-chain elastomers. We analyze the influence of external mechanical stress on the isotropic-smectic-C phase transition. While this phase transition is first order in low-molecular-weight materials, we show here that the order of this transition does not change in liquid-crystalline elastomers. The temperature dependence of the heat capacity and the nonlinear dielectric effect in the isotropic phase above the isotropic-smectic-C phase transition in liquid crystalline elastomers are calculated. The theoretical results are found to be in good agreement with experiment.  相似文献   

18.
A significant increase in the production of plastic materials and the expansion of their areas of application contributed to the accumulation of a large amount of waste of polymeric materials. Most of the polymer composition is made up of plasticizers. Phthalate plasticizers have been recognized as potentially hazardous to humans and the environment due to the long period of their biodegradation and the formation of persistent toxic metabolites. It is known that the industrial plasticizer dioctyl adipate is characterized by reduced toxicity and a short biodegradation period. The paper describes the synthesis of a number of new asymmetric esters based on adipic acid and ethoxylated butanol by azeotropic esterification. The receipt of the products was confirmed by IR spectra. The physicochemical properties of the synthesized compounds were investigated. The glass transition temperatures of PVC composites plasticized with alkyl butoxyethyl adipates were determined using DSC analysis. The ecological safety of esters was assessed by the phytotesting method. Samples of adipates were tested for fungal resistance, and the process of their biodegradation in soil was also studied. It is shown that the synthesized esters have good plasticizing properties and are environmentally safe. When utilized under natural conditions, they can serve as a potential source of carbon for soil microorganisms and do not form stable toxic metabolites; therefore, they are not able to accumulate in nature; when the plasticizers under study are disposed of in the soil, toxic substances do not enter.  相似文献   

19.
Organic solvent nanofiltration (OSN) is a molecular separation method which offers a sustainable and reliable solution compared to the conventional energy-intensive separation processes. OSN can be successfully applied to several applications, such as food, pharmaceutical, petrochemical and fine-chemical industries. Current research on OSN membranes mainly focuses on polymeric materials due to the ease of processing, controlled formation of pores, lower fabrication costs and higher flexibility as compared with inorganic materials. However, there are some limitations for the polymeric membranes which can be partially surmounted by adding nanoscale fillers into the polymeric matrix to make nanocomposite membranes. This review aims to comprehensively evaluate and report the advances in nanocomposite membranes prepared by using either different nanoscale fillers or various fabrication methods for OSN applications. Nanoparticles that will be discussed include metal-organic framework, graphene oxide, carbon nanotubes, silica, titanium, gold, zeolite and other fillers. The incorporation of these nanoscale fillers into the polymeric membranes can positively influence the mechanical strength, chemical and thermal stability, hydrophilicity, solute selectivity and solvent permeance. This study may provide helpful insights to develop next-generation of OSN membranes for years to come.  相似文献   

20.
PREFACE     
Ming-Qiu Zhang  Shi-Yong Liu 《高分子科学》2021,39(10):前插4-前插5
正We are delighted to present this special-themed issue of the Chinese Journal of Polymer Science(CJPS) devoted to the recent advances in self-healing polymeric materials. Selfhealing has been recognized as one of the most attractive topics for advanced polymers in the past few years, enabling their reworkability, durability and reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号