首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
For linear quantile regression model, this paper proves that the test statistics, besed on smoothed empirical likelihood (SEL) method and least absolute deviation (LAD) method, both converge weakly to a noncentral Chi-square distribution under the local alternatives $H_1:beta=beta_0+a_n$, where $beta$ is the true parameter. Simulation results show that the SEL method is more efficient than the LAD method.  相似文献   

2.
This paper is focused on testing the parameters of the quantile regression models. For complete observation, it is shown in literature that the test statistics, based on empirical likelihood (EL) method and smoothed empirical likelihood (SEL) method, both converge weakly to the standard Chi-square distribution $chi_M^2$ under the null hypothesis. For right censored data, the statistics in literature, by the EL method, have a weighted Chi-square limiting distribution, but the weights are unknown. In this paper, we show that the statistics based on the EL method and the SEL method also converge weakly to $chi_M^2$under the null hypothesis, so there is no need to estimate any weights. As its estimating function is smoothed, the SEL method can be Bartlett corrected. Numerical results show that the SEL method, via Bartlett correction, outperforms some recent methods.  相似文献   

3.
In this paper, we discuss tail asymptoticsproperties for a class of infinite phase type distributions based onprobability generating function or Laplace-Stieltjes transform. The results show that, unlike finite phase cases, the tail asymptotics for the infinite phase type distributions we considered do not decay geometrically or exponentially.  相似文献   

4.
多元非参数分位数回归常常是难于估计的, 为了降低维数同时保持非参数估计的灵活性, 人们常常用单指标的方法模拟响应变量的条件分位数. 本文主要研究单指标分位数回归的变量选择. 以最小化平均损失估计为基础, 我们通过最小化具有SCAD惩罚项的平均损失进行变量选择和参数估计. 在正则条件下, 得到了单指标分位数回归SCAD变量选择的Oracle性质, 给出了SCAD变量选择的计算方法, 并通过模拟研究说明了本文所提方法变量选择的样本性质.  相似文献   

5.
本文对两个样本数据不完全的线性模型展开讨论, 其中线性模型协变量的观测值不缺失, 响应变量的观测值随机缺失(MAR). 我们采用逆概率加权填补方法对响应变量的缺失值进行补足, 得到两个线性回归模型``完全'样本数据, 在``完全'样本数据的基础上构造了响应变量分位数差异的对数经验似然比统计量. 与以往研究结果不同的是本文在一定条件下证明了该统计量的极限分布为标准, 降低了由于权系数估计带来的误差, 进一步构造出了精度更高的分位数差异的经验似然置信区间.  相似文献   

6.
We extend the instrumental variable method for the mean regression models to linear quantile regression models with errors-in-variables. The proposed estimator is consistent and asymptotically normally distributed under some fairly general conditions. Moreover, this approach is practical and easy to implement. Simulation studies show that the finite sample performance of the estimator is satisfactory. The method is applied to a real data study of education and wages.  相似文献   

7.
Most regression modeling is based on traditional mean regression which results in non-robust estimation results for non-normal errors. Compared to conventional mean regression, composite quantile regression (CQR) may produce more robust parameters estimation. Based on a composite asymmetric Laplace distribution (CALD), we build a Bayesian hierarchical model for the weighted CQR (WCQR). The Gibbs sampler algorithm of Bayesian WCQR is developed to implement posterior inference. Finally, the proposed method are illustrated by some simulation studies and a real data analysis.  相似文献   

8.
When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

9.
This article proposes a Bayesian approach for the sparse group selection problem in the regression model. In this problem, the variables are partitioned into different groups. It is assumed that only a small number of groups are active for explaining the response variable, and it is further assumed that within each active group only a small number of variables are active. We adopt a Bayesian hierarchical formulation, where each candidate group is associated with a binary variable indicating whether the group is active or not. Within each group, each candidate variable is also associated with a binary indicator, too. Thus, the sparse group selection problem can be solved by sampling from the posterior distribution of the two layers of indicator variables. We adopt a group-wise Gibbs sampler for posterior sampling. We demonstrate the proposed method by simulation studies as well as real examples. The simulation results show that the proposed method performs better than the sparse group Lasso in terms of selecting the active groups as well as identifying the active variables within the selected groups. Supplementary materials for this article are available online.  相似文献   

10.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

11.
删失回归模型是一种很重要的模型,它在计量经济学中有着广泛的应用. 然而,它的变量选择问题在现今的参考文献中研究的比较少.本文提出了一个LASSO型变量选择和估计方法,称之为多样化惩罚$L_1$限制方法, 简称为DPLC. 另外,我们给出了非0回归系数估计的大样本渐近性质. 最后,大量的模拟研究表明了DPLC方法和一般的最优子集选择方法在变量选择和估计方面有着相同的能力.  相似文献   

12.
纵向数据常常用正态混合效应模型进行分析.然而,违背正态性的假定往往会导致无效的推断.与传统的均值回归相比较,分位回归可以给出响应变量条件分布的完整刻画,对于非正态误差分布也可以给稳健的估计结果.本文主要考虑右删失响应下纵向混合效应模型的分位回归估计和变量选择问题.首先,逆删失概率加权方法被用来得到模型的参数估计.其次,结合逆删失概率加权和LASSO惩罚变量选择方法考虑了模型的变量选择问题.蒙特卡洛模拟显示所提方法要比直接删除删失数据的估计方法更具优势.最后,分析了一组艾滋病数据集来展示所提方法的实际应用效果.  相似文献   

13.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

14.
在一个删失回归模型("Tobit"模型)中,我们常常要研究如何选择重要的预报变量.本文提出了基于信息理论准则的两种变量选择程序,并建立了它们的相合性.  相似文献   

15.
Considering a parameter estimation and variable selection problem in logistic regression, we propose Smooth LASSO and Spline LASSO. When the variables is continuous, using Smooth LASSO can select local constant coefficient in each group. However, in some case, the coefficient might be different and change smoothly. Using Spline Lasso to estimate parameter is more appropriate. In this article, we prove the reliability of the model by theory. Finally using coordinate descent algorithm to solve the model. Simulations show that the model works very effectively both in feature selection and prediction accuracy.  相似文献   

16.
??Considering a parameter estimation and variable selection problem in logistic regression, we propose Smooth LASSO and Spline LASSO. When the variables is continuous, using Smooth LASSO can select local constant coefficient in each group. However, in some case, the coefficient might be different and change smoothly. Using Spline Lasso to estimate parameter is more appropriate. In this article, we prove the reliability of the model by theory. Finally using coordinate descent algorithm to solve the model. Simulations show that the model works very effectively both in feature selection and prediction accuracy.  相似文献   

17.
This article suggests a method for variable and transformation selection based on posterior probabilities. Our approach allows for consideration of all possible combinations of untransformed and transformed predictors along with transformed and untransformed versions of the response. To transform the predictors in the model, we use a change-point model, or “change-point transformation,” which can yield more interpretable models and transformations than the standard Box–Tidwell approach. We also address the problem of model uncertainty in the selection of models. By averaging over models, we account for the uncertainty inherent in inference based on a single model chosen from the set of models under consideration. We use a Markov chain Monte Carlo model composition (MC3) method which allows us to average over linear regression models when the space of models under consideration is very large. This considers the selection of variables and transformations at the same time. In an example, we show that model averaging improves predictive performance as compared with any single model that might reasonably be selected, both in terms of overall predictive score and of the coverage of prediction intervals. Software to apply the proposed methodology is available via StatLib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号