首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

2.
Multifaceted Coordination Chemistry of Vanadium(V): Substitution, Rearrangement Reactions, and Condensation Reactions of Oxovanadium(V) Complexes of the Tripodal Oxygen Ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? The octahedral oxovanadium(V) complex [V(O)F2LOMe] of the tripodal oxygen ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? reacts with alcohols and phenol with substitution of one fluoride ligand to form alkoxo complexes [V(O)F(OR)LOMe], R = Me, Et, i‐Prop, Ph. In the presence of water, however, both fluoride ions are substituted and a complex with the composition VO2LOMe can be isolated. The crystal structure shows that the oxo‐bridged trimer [{V(O)(LOMe)O}3] was synthesized. In the presence of BF3 the fluoride ligand in the alkoxo‐complex [V(O)F(OEt)LOMe] can be exchanged for pyridine to yield [V(O)(OEt)pyLOMe]BF4. Analogous attempts to exchange the fluoride ligand for tetrahydrofuran and acetonitrile induces a rearrangement reaction that leads to the vanadium complex [V(O)(LOMe)2]BF4. The crystal structure of this compound has been determined. Its 1H and 31P‐NMR spectra show that it is a highly fluxional vanadium complex at ambient temperature in solution. The two tripodal ligands LOMe? coordinate the vanadium centre as bidentate or tridentate ligands. The exchange bidentate/tridentate becomes slow on the NMR time scale below about 200 K.  相似文献   

3.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

4.
Two stable thiazolylazo anion radical complexes of ruthenium(II), [Ru(L1•−)(Cl)(CO)(PPh3)2] (1) and [Ru(L2•−)(Cl)(CO)(PPh3)2] (2) (where L1 = 2′-Thiazolylazo-2-imidazole and L2 = 4-(2′-Thiazolylazo)-1-n-hexadecyloxy-naphthalene), have been synthesized and characterized by spectroscopic and electrochemical techniques. The radical nature of the complexes has been confirmed from their room temperature magnetic moments and X-band ESR spectra. The radical complexes display a moderately intense (ε ~ 104 M−1 cm−1) and relatively broad band in 430–460 nm region. In the microcrystalline state, complexes (1) and (2) display strong ESR signals at g = 1.951 and g = 1.988, respectively. In CH2Cl2 solution, complexes (1) and (2) show a quasireversible one-electron response near −0.64 and −0.59 V, respectively, versus Ag/AgCl due to the radical redox couple [RuII(L)(Cl)(CO)(PPh3)2]/[RuII (L•−)(Cl)(CO)(PPh3)2].  相似文献   

5.
1,3‐Dipoles of the type metallo nitrile ylide and metallo nitrile imine were prepared by mono‐α‐deprotonation of CH‐acidic {[W(CO)5CHCH2PPh3]PF6, M(CO)5CNCH2CO2R (M = Cr, W; R = Me, Et), [Pt(Cl)(CNCH2CO2Et)(PPh3)2]BF4} and NH‐acidic isocyanide complexes (Cr(CO)5CNNH2) and were stabilized by coordination to a second transition metal complex fragment {Cr(CO)5, [M(CO)5]+ (M = Mn, Re), [FeCp(CO)2]+, [Pt(Cl)(PR3)2]+ (R = Et, Ph)}. All dinuclear products 1 – 7 , 10 , and 11 are neutral species except [(Ph3P)2(Cl)Pt{μ2‐CNCH(CO2Et)}Pt(Cl)(PPh3)2]BF4 ( 8 ). Complex (OC)5W{μ2‐CNCH(CO2Et)}Pt(Cl)(PEt3)2 ( 5b ) was characterized by X‐ray diffraction. Twofold deprotonation/platination to give (OC)5Cr{μ3‐CNC(Ph)}[Pt(Cl)(PPh3)2]2 ( 9 ) was achieved in the case of Cr(CO)5CNCH2Ph.  相似文献   

6.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

8.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

9.
[OsCl(CO)2(CNR)(PPh3)2]+ (R = p-tolyl) reacts with OMe? to give OsCl(CO2Me)(CO)(CNR)(PPh3)2 but reaction with SH? produces the π-bound p-tolylisothiocyanate complex, Os(η2-SCNR)(CO)2(PPh3)2, which can be protonated or methylated at N to yield complexes containing bidentate thiocarboxamido-ligands.  相似文献   

10.
The reaction of the [Ni6(CO)12]2− dianion with [Rh(COD)Cl]2 (COD = cyclooctadiene) in acetone affords a mixture of bimetallic Ni–Rh clusters, mainly consisting of the new [Ni7Rh3(CO)18]3− and [Ni8Rh(CO)18]3− trianions. A study of the reactivity of [Ni7Rh3(CO)18]3− led to isolation of the new [Ni3Rh3(CO)13]3− and [NiRh8(CO)19]2− anions. All these new bimetallic Ni–Rh carbonyl clusters have been isolated in the solid state as tetrasubstituted ammonium salts and have been characterised by elemental analysis, X-ray diffraction studies, ESI-MS and electrochemistry. The unit cell of the [NEt4]3[Ni7Rh3(CO)18] salt contains two orientationally-disordered ν2-tetrahedral [Ni7Rh3(CO)18]3− trianions with occupancy factors of 0.75 and 0.25. Besides, their inner Ni3Rh3 octahedral moieties show two cis sites purely occupied by Rh atoms, two trans sites purely occupied by Ni atoms and the remaining two cis sites are disordered Ni and Rh sites with respective occupancy fraction of 0.5. At difference from the parent [Ni7Rh3(CO)18]3−, the octahedral [Ni3Rh3(CO)13]3− displays an ordered distribution of Ni and Rh atoms in two staggered triangles. The [NiRh8(CO)19]2− dianion adopts an isomeric metal frame with respect to that of the [PtRh8(CO)19]2− congener. As a fallout of this work, new high-yield synthesis of the known [Ni6Rh3(CO)17]3− and [Ni6Rh5(CO)21]3−, as well as other currently-investigated bimetallic Ni–Rh clusters have been obtained.  相似文献   

11.
Carbonylrhodium complexes formed during hydroformylation of CH2O from various rhodium precursors were investigated byin situ IR spectroscopy. It was found that under the conditions of the hydroformylation of CH2O inN,N-dimethylacetamide (DMAA), RhH(CO)(PPh3)3, RhCl(CO)(PPh3)2, RhCl(PPh3)3, RhCl(CO)(PBu3)2, and [RhCl(CO)2]2 form complex systems that necessarily contain anionic complexes, [Rh(CO)2Lx(DMAA)y] (L = PPh3, PBu3,x = 1 to 2,y = 1 to 0; [Rh(CO)4]). The participation of ionic structures in the hydroformylation of CH2O, most likely, in the step of the activation of CH2O, was proven by kinetic techniques.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1066–1069, June, 1995.  相似文献   

12.
Rhodium(I) carbonyl complexes [Rh(CO)2ClL] where L = Ph3PO, Ph3PS and Ph3PSe, were synthesized and characterized by elemental analysis, i.r. and by 1H-, 13C- and 31P-n.m.r. spectroscopy. The vBD;(CO) band frequencies in the complexes follow the order: Ph3PO > Ph3PS > Ph3PSe, in keeping with the hard/soft nature of the interactions. The complexes undergo oxidative additions with electrophiles such as MeI, PhCH2Cl and I2 to give, e.g. [Rh(CO)(COMe)ClIL] which react with PPh3 to give trans-[Rh(CO)Cl(PPh3)2]. The catalytic activity of the [Rh(CO)2ClL] complexes in carbonylation of MeOH is higher than that of the well-known [Rh(CO)2I2] species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The [OsH(CO)(NCMe)2(PPh3)2]BF4 complex (1) is an efficient and regioselective precatalyst for the hydrogenation of the nitrogen-containing ring of quinoline (Q), isoquinoline (iQ), 5,6- and 7,8-benzoquinoline (BQ), and acridine (A) under mild reaction conditions (125 °C and 4 atm H2). Kinetic studies of the hydrogenation of Q and iQ to give tetrahydroquinoline (THQ) and tetrahydroisoquinoline (THiQ), respectively, lead to the rate law r = K 1 k 2/(1 + K 1[H2])[Os][H2]2, which becomes r = K 1 k 2[Os][H2]2, at low hydrogen concentrations (below 1 atm H2); the catalytically active species is of the type [OsH(CO)(L)( 1-N)(PPh3)2]BF4 [(2a): L = NCMe, N = Q; (2b): L = N = iQ]. The generic mechanisms involve a rapid and partial hydrogenation of the coordinated substrate (N) of complex (2) to yield the corresponding dihydroderivative (DHN) species [OsH(CO)(L)( 1-DHN)(PPh3)2]BF4 [(3a): L = NCMe, DHN = DHQ; (3b): L = iQ or THiQ, DHN = DHiQ], followed by the rate-determining second hydrogenation of the DHN ligand, which yield [OsH(CO)(L)( 1-THN)(PPh3)2]BF4 [(4a): L = NCMe, THN = THQ; (4b): L = iQ or THiQ, THN = THiQ]; substitution of the THN ligand by a new molecule of the respective substrate regenerates the active species and restarts the catalytic cycle. For the hydrogenation of acridine to give 9,10-dihidroacridine (acridane), the rate law was r = k 1[Os][H2]; the mechanism involves the hydrogenation of the active species [OsH(CO)(NCMe)( 1-A)(PPh3)2]BF4 (2c) to yield acridane and the unsaturated species [OsH(CO)(NCMe)(PPh3)2]BF4 as the rate-determining step.  相似文献   

14.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

15.
Summary Diphenyl(2-pyridyl)phosphine (PPh2pyl), phenylbis(2-pyridyl)-phosphine (PPhpyl2) and tris(2-pyridyl)-phosphine (Ppyl3) react with [Rh(acac)(CO)2] (acac=acetylacetonate) and Rh(8-oxy)(CO)2(8-oxy=8-hydroxyquinolinate) yielding [Rh(chel)(CO)(PPhxpyl3–x)]. The properties of these complexes were examined by spectral (i.r.,u.v.-vis,31P n.m.r.) and chemical methods.  相似文献   

16.
Summary The complex [RuH(CO)(NCMe)2(PPh3)2]BF4 (1) is an efficient and regioselective catalyst precursor for the hydrogenation of polyaromatic nitrogen compounds such as quinoline (Q), isoquinoline (iQ), indole (ln), 5,6- and 7,8-benzoquinoline (BQ) and acridine (A) under relatively mild reaction conditions (125 °C, 4 atm H2). The order of individual initial rates was: A > Q > 5,6-BQ > 7,8-BQ > ln > iQ, reflecting both steric and electronic effects. For the regioselective homogeneous hydrogenation of A to 9,10-dihydroacridine (DHA) catalysed by complex (1), a kinetic study was carried out; the experimentally determined rate law was r = k 1 [Ru] [H2]. These findings are consistent with a mechanism involving the hydrogenation of [RuH(CO)(A)(NCMe)(PPh3)2]BF4 to yield DHA and the unsaturated species [RuH(CO)(NCMe)(PPh3)2]BF4 in the rate-determining step.  相似文献   

17.
Reaction of the [Rh(η5-C5Me5)(NCMe)3]2+ (1) dication with the hexaosmium [Os6(CO)17]2− (2) dianion leads to the initial formation of [Os6(CO)17Rh(η5-C5Me5)] (3). This cluster readily adds CO to form [Os6(CO)18Rh(η5-C5Me5)] (4) which has been characterised crystallographically. 3 also adds dihydrogen to give [Os6H2(CO)17Rh(η5-C5Me5)] (5) and undergoes a substitution reaction with PPh3 to form [Os6(CO)16(PPh3)Rh(η5-C5Me5)] (6). With the [Ru6(CO)18]2− (7) dianion, [Rh(η5-C5Me5)(NCMe)3]2+ (1) reacts to form three mixed-metal clusters [Ru5(CO)15Rh(η5-C5Me5)] (8), [Ru6(CO)18Rh(η5-C5Me5)] (9) and [Ru6(CO)18Rh25-C5Me5)2] (10). The clusters have been characterised spectroscopically and the structures of 8 and 10 have been confirmed crystallographically. The cluster 8 undergoes a substitution reaction with P(OMe)3 to form the disubstituted product [Ru5(CO)13(P(OMe)3)2Rh((η5-C5Me5)] (11) which has also been characterised crystallographically.  相似文献   

18.
The O-perrhenato complexes LnMOReO3 (LnM = Re(CO)5, Rh(PPh3)2(CO), Ir(PPh3)2(CO), Pt(PPh3)2(H), Ru(η5-C5H5)(PPh3)2, Os(PPh3)3(CO)(H), Ir(PPh3)2(CO)(H)(Cl) have been prepared from the corresponding halogeno compounds with AgReO4 or NaReO4, respectively. The spectroscopic data (IR, 1H NMR) indicate that ReO4 is a stronger ligand compared to ClO4, SO3CF3 and BF4.  相似文献   

19.
Alkylation of the [Fe33-O)(CO)9]2− dianion withtert-butyl iodide afforded the [Fe33OBu1)(CO)9] monoanion. The reaction of the latter with Au(PPh3)Cl in the presence of TIBF4 yielded the new heterometallic “butterfly” cluster [Fe3(CO)93-OBut)Au(PPh3)]. According to the X-ray data, both clusters synthesized contain the unchanged Fe33-O) fragment of the initial dianion. The addition of the Au(PPh3) fragment to the monoanion occurred in such a way as to minimize steric changes. As a result, a “turned inside out” heterometallic “butterfly”, which contains the μ3-O ligand on the outside rather than on the inside, was obtained. The dihedral angle characterizing the “butterfly” is 151°. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1779–1783, September, 1999.  相似文献   

20.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号