首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two-dimensional orthogonal wavelet transform was applied to the LIF image of lobed mixing jet for identifying the multi-scale turbulent structures. The digital imaging slice photographs atz /D=1.0 and 1.5 withRe=3000 were respectively decomposed into seven image components with different broad scales. These image components provided the visualized information on the multi-scale structures in a lobed mixing turbulent jet. The cores and edges of the vortices and the coherent structures at different resolutions or scales can be easily extracted. It was found that the scale range of the coherent structure becomes narrow along the downstream direction. The size of the intermediate- and small-scale structures does not vary significantly with downstream distance.  相似文献   

2.
DiCristina  Giovanni  Kang  Kyungrae  Song  Seung Jin  Choi  Jong Ho  Do  Hyungrok  Im  Seong-kyun 《显形杂志》2019,22(2):359-369
Journal of Visualization - Isolator flows downstream of the scoop model inlet were visualized by using a planar laser Rayleigh scattering imaging technique. The scoop model was designed for a...  相似文献   

3.
Outside of the fields where flow visualization is traditionally applied, there exist many processes where fluid phenomena are critical. Here, we survey flow visualization work with a focus on two thermal metal cutting processes. These two processes – plasma-arc cutting and gas assisted laser cutting – account for a large fraction of the means by which steel is cut in our world. Plasma-arc cutting utilizes an electric arc transferred between a cathode and the steel being cut to produce a high temperature gas jet that melts and removes metal. In gas assisted laser cutting, the assist jet is often high-pressure supersonic nitrogen for stainless steel, or near-atmospheric pressure, low-speed oxygen for carbon steel. Visualization of these millimeter-range diameter jets helps to understand the different roles that the assist gas has in these cutting processes, particularly with how the jets interact with the metal being cut. We describe experimental techniques for visualization of the arc jet and gas assist jet, as well as the liquid metal flows being removed from the cut and the gas flow in the torch itself. These visualizations overcome the small physical scales of the process, the bright illumination from the arc itself, and harsh high-temperature environment. The results lend perspective and understanding of the physical phenomena important to process control.  相似文献   

4.
For the detailed investigation of the 3D unsteady incompressible viscous separated fluid flows around a sphere (for 200≤Re≤700) and a circular cylinder (for 200≤Re≤400) the direct numerical simulation and 3D visualization are used. For 3D visualization of the fluid flows around a sphere the definition of vortex core as a connected region containing two negative eigenvalues of theS 2+Ω 2 tensor is used (whereS i,j andΩ ij are the rate of strain and the rate of rotation tensors). The formation mechanism of vortices in the sphere wake for Re=500 is described in detail. For 3D visualization of the fluid flows around a circular cylinder the 3D isosurfaces of the streamwise component of vorticity ω x are used.  相似文献   

5.
Several experimental and numerical studies on muzzle blast and flow fields have been performed. However, due to the extremely short duration and the spatiotemporal evolution of these flows, experimental quantitative techniques are limited. As a consequence, the number of validated numerical calculations is limited as well. On the other hand, despite the development of computer models that have succeeded in predicting the measured pressure and velocity, they show unrealistic temperatures and densities. Therefore, temperature and/or density measurements are required to validate these codes, thus the motivation of this research. The present paper focuses on the development of a density-sensitive and non-intrusive measurement technique and the implementation of a quantitative flow visualization method based on Background-Oriented Schlieren (BOS) combined with a high-speed camera. In BOS, the experimental setup of conventional Schlieren (mirrors, lenses, and knife-edge) is replaced by a background pattern and a single digital camera. The muzzle flow fields and the flow field around a 5.56-mm projectile in flight were successfully visualized. Indeed, the implemented experimental high-speed BOS setup has demonstrated its ability to capture clearly the salient features of the precursor and the propellant gas flow fields and their interactions. The captured structures such as vortex, barrel shock, Mach disk, and blast wave show a good agreement with that issued from a realized conventional Schlieren setup and the bibliography, confirming the BOS capability to visualize complex density flow fields.  相似文献   

6.
7.
8.
Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques through the injection of a seed powder in the plasma flow have also been often used for the study of flow structure. Shadowgraphs and Schlieren techniques have been used particularly when cold flow regions are present in the close proximity of the plasma discharge. They also provide key information about the flow structure in the fringes of the discharge. Laser strobe techniques are commonly used for the characterization of particle trajectories under plasma conditions. A brief review is presented of available plasma and particulate diagnostic techniques with detailed measurements reported for a radio frequency (r.f.) induction plasma discharge using enthalpy probe techniques.  相似文献   

9.
10.

Abstract  

A deeper knowledge of the three-dimensional (3D) structure of the pulmonary acinus has direct applications in studies on acinar fluid dynamics and aerosol kinematics. To date, however, acinar flow simulations have been often based on geometrical models inspired by morphometrical studies; limitations in the spatial resolution of lung imaging techniques have prevented the simulation of acinar flows using 3D reconstructions of such small structures. In the present study, we use high-resolution, synchrotron radiation-based X-ray tomographic microscopy (SRXTM) images of the pulmonary acinus of a mouse to reconstruct 3D alveolar airspaces and conduct computational fluid dynamic (CFD) simulations mimicking rhythmic breathing motion. Respiratory airflows and Lagrangian (massless) particle tracking are visualized in two examples of acinar geometries with varying size and complexity, representative of terminal sacculi including their alveoli. The present CFD simulations open the path towards future acinar flow and aerosol deposition studies in complete and anatomically realistic multi-generation acinar trees using reconstructed 3D SRXTM geometries.  相似文献   

11.
A new magnetic resonance imaging technique was applied to the Taylor-Couette and spiral Poiseuille (Taylor-Couette with superposed mean axial flux) flows for the first time. The experimental technique is a combination of spatial tagging methods and a snapshot FLASH imaging sequence, which allows the full-field visualization of 2-D slices of the flow field, with image acquisition times approximately half a second. By acquiring images every few seconds, direct visualization of flow patterns can be obtained in the form of cinematography. Tagged images of the Taylor-Couette flow were acquired in both the axial and transverse planes and confirmed previously reported numerical predictions of Taylor cell size. Tagged images of the spiral Poiseuille flows verified that the cells in this flow propagate at a higher velocity than the mean axial flow. In addition, intermittent cell formation was observed as the axial flow was increased.  相似文献   

12.
The influence of forced disturbances in the velocity and pressure fields on stability loss, turbulization, and monodispersion of a capillary laminar jet of a viscous liquid in a gas is studied.  相似文献   

13.
A possibility of visualizing flows using random inhomogeneities of film thicknesses of different colors as particles for visualization is shown on an example of a vortex flow structure in an oscillating thin liquid film. Formation of vortex flows in a thin liquid film containing surface-active substances is investigated in experiments. The film is fixed horizontally along the edges of the cell vibrating in the vertical direction. Spatially homogeneous oscillations of the liquid film can excite different types of waves that generate two-dimensional vortex flows due to nonlinearity. We present results of experimental investigation of the structure of vortex flows in a thin film (0.5–10 μm) with rectangular boundaries. It has been revealed that, if the horizontal size of an inhomogeneous region is much smaller than the size of vortices, the inhomogeneities are transported by vortices and their interference pattern can be used for visualization of vortex flows.  相似文献   

14.
15.

Abstract  

Classic examples of low-Reynolds recirculating cavity flows are typically generated from lid-driven boundary motion at a solid–fluid interface, or alternatively may result from shear flow over cavity openings. Here, we are interested in an original family of boundary-driven cavity flows occurring, in contrast to classic setups, at fluid–fluid interfaces. Particle image velocimetry (PIV) is used to investigate the structure of internal convective flows observed in thin liquid shells. Under the specific configuration investigated, the soap bubble’s liquid shell is in fact in motion and exhibits sporadic local “bursts”. These bursts induce transient flow motion within the cavity of order ReO(1). The combination of PIV and proper orthogonal decomposition (POD) is used to extract dominant flow structures present within bubble cavities. Next, we show that thermally induced Marangoni flows in the liquid shell can lead to forced, (quasi) steady-state, internal recirculating flows. The present findings illustrate a novel example of low-Reynolds boundary-driven cavity flows.  相似文献   

16.
17.
Experimentally produced two-dimensional flows have become possible in recent years due to the invention of Liquid Film Tunnel (LFT) in 1987 by Gharib and Derango. This simple, inexpensive, yet powerful device, which we have improved extensively over the last decade, can generate a variety of flows. Liquid (soap) films can be visualized through light interference effects produced by small variations in the film thickness. Flow-disturbing objects such as cylinders, wedges, and air bubbles create these variations. Monochromatic visualization of these thickness variations will render phenomenally accurate graphic information about the flow patterns thus produced. Under a polychromatic light, these interference effects can be spectacular, due to reflection of different colors by different isothickness regions.  相似文献   

18.
Light-sheet generator systems using a sweeping, focused laser beam and spherocylindrical optical components are described and their respective performances discussed. They allow the visualization of supersonic air flows by means of light scattering. Tomographic recordings give a three-dimensional reconstruction of the flow (especially the stationary structures) and can be realized in real-time.  相似文献   

19.
20.
朱昌盛  王军伟  王智平  冯力 《物理学报》2010,59(10):7417-7423
基于耦合流场和热噪声的相场模型及合理高效的三维动态求解域加速算法,定量模拟了在受迫流动下枝晶的非对称生长及流速对迎流、背流两侧的温度分布和层流层分布的影响.计算结果表明,受迫流动使迎流、背流两侧温度的分布与层流层分布呈现不对称状态,导致迎流侧与背流侧的过冷度不同,而熔体施加于枝晶界面前沿迎流侧的力还不足以抑制过冷度的作用,结果造成枝晶迎流方向优先生长,从而产生倾向于散热方向的倾斜,同时,由于迎流侧的实际过冷度大于背流侧,有利于促进迎流一侧枝晶生长速度以及稳定侧向分枝生长,从而导致了侧向分枝的非对称生长.随  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号