首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monte Carlo simulations were used to investigate the phase behavior of hydrated liquid silica as a function of temperature and overall water mole fraction, x w. Simulations using the Feuston-Garofalini potential were performed in the isobaric-isothermal ensemble at p = 1 GPa for 15 temperatures (2000 < or = T < or = 9000 K) and 25 compositions (0.0 < or = x w < or = 0.4). The unusual volume minimum exhibited by tetrahedrally coordinated liquid silica is found to persist up to x w approximately 0.267, although the temperature of the volume minimum decreases with increasing water content. Structural properties of the pure and hydrated systems are compared and the addition of water to liquid silica disrupts the silica network more dramatically than temperature alone. The simulations yield very low concentrations of molecular water, e.g. only about 1.2% of the oxygen atoms are bound to exactly two hydrogen atoms at x w = 0.4 and T = 3000 K.  相似文献   

2.
We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the free energy barrier to nucleation was determined to be ~18 k(B)T and the critical nucleus comprised ~85 ice particles. Growth from the supercooled liquid gives clusters that are predominantly cubic, whilst starting with a pre-formed subcritical nucleus of cubic or hexagonal ice results in the growth of predominantly that phase of ice only.  相似文献   

3.
Using first principles molecular dynamics simulations in the isobaric-isothermal ensemble (T = 300 K, p = 1 atm) with the Becke-Lee-Yang-Parr exchange/correlation functional and a dispersion correction due to Grimme, the hydrogen bonding networks of pure liquid water, methanol, and hydrogen fluoride are probed. Although an accurate density is found for water with this level of electronic structure theory, the average liquid densities for both hydrogen fluoride and methanol are overpredicted by 50 and 25%, respectively. The radial distribution functions indicate somewhat overstructured liquid phases for all three compounds. The number of hydrogen bonds per molecule in water is about twice as high as for methanol and hydrogen fluoride, though the ratio of cohesive energy over number of hydrogen bonds is lower for water. An analysis of the hydrogen-bonded aggregates revealed the presence of mostly linear chains in both hydrogen fluoride and methanol, with a few stable rings and chains spanning the simulation box in the case of hydrogen fluoride. Only an extremely small fraction of smaller clusters was found for water, indicating that its hydrogen bond network is significantly more extensive. A special form of water with on average about two hydrogen bonds per molecule yields a hydrogen-bonding environment significantly different from the other two compounds.  相似文献   

4.
Analytical expressions were derived to estimate the contribution to the intermolecular energy and pressure from pairs of rigid molecules farther than a cutoff distance; inverse power terms (like in the Lennard-Jones potential) and exponential terms (like in the Morse potential) were considered. The Lennard-Jones case was tested on liquid benzene at room temperature in the Gibbs ensemble using the cavity-biased technique. The density produced by simulations using the derived cutoff correction was found to be independent of the cutoff used.  相似文献   

5.
The static and dynamical properties of heavy water have been studied at ambient conditions with extensive Car-Parrinello molecular-dynamics simulations in the canonical ensemble, with temperatures ranging between 325 and 400 K. Density-functional theory, paired with a modern exchange-correlation functional (Perdew-Burke-Ernzerhof), provides an excellent agreement for the structural properties and binding energy of the water monomer and dimer. On the other hand, the structural and dynamical properties of the bulk liquid show a clear enhancement of the local structure compared to experimental results; a distinctive transition to liquidlike diffusion occurs in the simulations only at the elevated temperature of 400 K. Extensive runs of up to 50 ps are needed to obtain well-converged thermal averages; the use of ultrasoft or norm-conserving pseudopotentials and the larger plane-wave sets associated with the latter choice had, as expected, only negligible effects on the final result. Finite-size effects in the liquid state are found to be mostly negligible for systems as small as 32 molecules per unit cell.  相似文献   

6.
Molecular-dynamics simulations of Cl(-) and Na(+) ions are performed to calculate ionic solvation free energies in both bulk simple point-charge/extended water and ice 1 h at several different temperatures, and at the basal ice 1 h/water interface. For the interface we calculate the free energy of "transfer" of the ions across the ice/water interface. For the ions in bulk water in the NPT ensemble at 298 K and 1 atm, results are found to be in good agreement with experiments, and with other simulation results. Simulations performed in the NVT ensemble are shown to give equivalent solvation free energies, and this ensemble is used for the interfacial simulations. Solvation free energies of Cl(-) and Na(+) ions in ice at 150 K are found to be approximately 30 and approximately 20 kcal mol(-1), respectively, less favorable than for water at room temperature. Near the melting point of the model the solvation of the ions in water is the same (within statistical error) as that measured at room temperature, and in the ice is equivalent and approximately 10 kcal mol(-1) less favorable than the liquid. The free energy of transfer for each ion across ice/water interface is calculated and is in good agreement with the bulk observations for the Cl(-) ion. However, for the model of Na(+) the long-range electrostatic contribution to the free energy was more negative in the ice than the liquid, in contrast with the results observed in the bulk calculations.  相似文献   

7.
Equilibrium and nonequilibrium molecular dynamics (MD) simulations have been performed in both isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensemble systems. Under steady state shearing conditions, thermodynamic states and rheological properties of liquid n-hexadecane molecules have been studied. Between equilibrium and nonequilibrium states, it is important to understand how shear rates (gamma) affect the thermodynamic state variables of temperature, pressure, and density. At lower shear rates of gamma<1 x 10(11) s(-1), the relationships between the thermodynamic variables at nonequilibrium states closely approximate those at equilibrium states, namely, the liquid is very near its Newtonian fluid regime. Conversely, at extreme shear rates of gamma>1 x 10(11) s(-1), specific behavior of shear dilatancy is observed in the variations of nonequilibrium thermodynamic states. Significantly, by analyzing the effects of changes in temperature, pressure, and density on shear flow system, we report a variety of rheological properties including the shear thinning relationship between viscosity and shear rate, zero-shear-rate viscosity, rotational relaxation time, and critical shear rate. In addition, the flow activation energy and the pressure-viscosity coefficient determined through Arrhenius and Barus equations acceptably agree with the related experimental and MD simulation results.  相似文献   

8.
We present complementary molecular simulations and experimental results of phase equilibria for carbon dioxide expanded acetonitrile, methanol, ethanol, acetone, acetic acid, toluene, and 1-octene. The volume expansion measurements were done using a high-pressure Jerguson view cell. Molecular simulations were performed using the Gibbs ensemble Monte Carlo method. Calculations in the canonical ensemble (NVT) were performed to determine the coexistence curve of the pure solvent systems. Binary mixtures were simulated in the isobaric-isothermal distribution (NPT). Predictions of vapor-liquid equilibria of the pure components agree well with experimental data. The simulations accurately reproduced experimental data on saturated liquid and vapor densities for carbon dioxide, methanol, ethanol, acetone, acetic acid, toluene, and 1-octene. In all carbon dioxide expanded liquids (CXL's) studied, the molecular simulation results for the volume expansion of these binary mixtures were found to be as good as, and in many cases superior to, predictions based on the Peng-Robinson equation of state, demonstrating the utility of molecular simulation in the prediction of CXL phase equilibria.  相似文献   

9.
The wetting behavior of Lennard-Jones associating fluid on a crystalline surface is studied using Monte Carlo simulation in the isobaric-isothermal ensemble. We explore the structure of the adsorbed film, characterized by the distribution of all particles and the distributions of centers of mass of dimers, as well as by orientational distributions of the dimers. The simulations performed indicate the existence of a prewetting-like behavior of the adsorption isotherm. The results for a crystalline surface are compared with simular results obtained for a structureless surface. Finally, we present some density functional theory evaluations and compare them with the simulation results at a high temperature. Copyright 2000 Academic Press.  相似文献   

10.
The influence of silicalite-1 pores on the reaction equilibria and the selectivity of the propene metathesis reaction system in the temperature range between 300 and 600 K and the pressure range from 0.5 to 7 bars has been investigated with molecular simulations. The reactive Monte Carlo (RxMC) technique was applied for bulk-phase simulations in the isobaric-isothermal ensemble and for two phase systems in the Gibbs ensemble. Additionally, Monte Carlo simulations in the grand-canonical ensemble (GCMC) have been carried out with and without using the RxMC technique. The various simulation procedures were combined with the configurational-bias Monte Carlo approach. It was found that the GCMC simulations are superior to the Gibbs ensemble simulations for reactions where the bulk-phase equilibrium can be calculated in advance and does not have to be simulated simultaneously with the molecules inside the pore. The confined environment can increase the conversion significantly. A large change in selectivity between the bulk phase and the pore phase is observed. Pressure and temperature have strong influences on both conversion and selectivity. At low pressure and temperature both conversion and selectivity have the highest values. The effect of confinement decreases as the temperature increases.  相似文献   

11.
The density maximum and temperature dependence of the self-diffusion constant were investigated for the soft sticky dipole (SSD) water model and two related reparametrizations of this single-point model. A combination of microcanonical and isobaric-isothermal molecular dynamics simulations was used to calculate these properties, both with and without the use of reaction field to handle long-range electrostatics. The isobaric-isothermal simulations of the melting of both ice-Ih and ice-Ic showed a density maximum near 260 K. In most cases, the use of the reaction field resulted in calculated densities which were significantly lower than experimental densities. Analysis of self-diffusion constants shows that the original SSD model captures the transport properties of experimental water very well in both the normal and supercooled liquid regimes. We also present our reparametrized versions of SSD for use both with the reaction field or without any long-range electrostatic corrections. These are called the SSD/RF and SSD/E models, respectively. These modified models were shown to maintain or improve upon the experimental agreement with the structural and transport properties that can be obtained with either the original SSD or the density-corrected version of the original model (SSD1). Additionally, a novel low-density ice structure is presented which appears to be the most stable ice structure for the entire SSD family.  相似文献   

12.
A force field for liquid water including polarization effects has been constructed using an artificial neural network (ANN). It is essential to include a many-body polarization effect explicitly into a potential energy function in order to treat liquid water which is dense and highly polar. The new potential energy function is a combination of empirical and nonempirical potentials. The TIP4P model was used for the empirical part of the potential. For the nonempirical part, an ANN with a back-propagation of error algorithm (BPNN) was introduced to reproduce the complicated many-body interaction energy surface from ab initio quantum mechanical calculations. BPNN, described in terms of a matrix, provides enough flexibility to describe the complex potential energy surface (PES). The structural and thermodynamic properties, calculated by isobaric-isothermal (constant-NPT) Monte Carlo simulations with the new polarizable force field for water, are compatible with experimental results. Thus, the simulation establishes the validity of using our estimated PES with a polarization effect for accurate predictions of liquid state properties. Applications of this approach are simple and systematic so that it can easily be applied to the development of other force fields besides the water-water system.  相似文献   

13.
Liquid-vapor and liquid-liquid phase equilibria of the polarizable Brodholt-Sampoli-Vallauri water model have been investigated by Gibbs ensemble Monte Carlo computer simulations. The coexisting liquid and vapor densities and energy of vaporization of the model is found to be in a reasonable agreement with experimental data in the entire temperature range of liquid-vapor coexistence. The critical temperature and density of the model are found to be 615 K and 0.278 gcm(3), respectively, close to the experimental values of 647.1 K and 0.322 gcm(3). In the supercooled state two distinct liquid-liquid coexistence regions are observed. The existence of liquid-liquid phase separation of a polarizable water model is demonstrated for the first time.  相似文献   

14.
Monte Carlo simulations in the canonical, isobaric-isothermal, grand canonical, and Gibbs ensembles were used to assess whether the computationally expensive Ewald summation method for the computation of the first-order electrostatic energy can be replaced with a simpler truncation approach for accurate simulations of the saturated, superheated, and supersaturated vapor phases of dipolar and hydrogen-bonding molecules. Rotationally averaged hydrogen fluoride dimer and trimer energies, thermophysical properties and aggregation in the superheated vapor phase of hydrogen fluoride, nucleation free energy barriers for water, and the vapor–liquid coexistence properties of hydrogen fluoride and water were investigated over a wide range of state points. We find that for densities not too close to the critical density, results obtained from simulations using a spherical potential truncation based on neutral groups (molecules or fragments) for the Coulomb interactions are statistically identical to those obtained using the Ewald summation method. Use of the simpler spherical truncation results in a significant reduction of the computational effort for simulations employing molecular mechanics force fields and also allows for straightforward implementation of many-body expansion methods to compute the potential energy from electronic structure calculations of subsystems of the entire vapor-phase system.  相似文献   

15.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

16.
Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble (T = 323 K and p = 10 atm) were carried out to probe structural properties of an isolated n-octadecane chain solvated in water, methanol, water-rich, or methanol-rich mixtures and, for comparison, of an isolated chain in the gas phase and for neat liquid n-octadecane. The united-atom version of the TraPPE (transferable potentials for phase equilibria) force field was used to represent n-octadecane and methanol and the TIP-4P model was used for water. In all six environments, broad conformational distributions are observed and the n-octadecane chains are found to predominantly adopt extended, but not all-trans conformations. In addition, a small fraction of more collapsed conformations in which the chain ends approach each other is observed for aqueous hydration, the water-rich solvent mixture and the gas phase, but the simulation data do not support a simple two-state picture with folded and unfolded basins of attraction. For chains in these three "poor" solvent environments, the dihedral angles near the center of the chain show an enhancement of the gauche population. The ensemble of water-solvated chains with end-to-end contacts is preferentially found in a U-shaped conformation rather than a more globular state. An analysis of the local solvation structures in the water-methanol mixtures shows, as expected, an enrichment of the methyl group of methanol near the methylene and methyl segments of the n-octadecane chain. Interestingly, these local bead fractions are enhanced by factors of 2.5 and 1.5 for methyl and methylene segments reflecting the more hydrophobic nature of the former segments.  相似文献   

17.
A new force field for dimethyl ether (DME) based on the Lennard-Jones (LJ) 12-6 plus point charge functional form is presented in this work. This force field reproduces experimental saturated liquid and vapor densities, vapor pressures, heats of vaporization, and critical properties to within the statistical uncertainty of the combined experimental and simulation measurements for temperatures between the normal boiling and critical point. Critical parameters and normal boiling point are predicted to within 0.1% of experiment. This force field is used in grand canonical histogram reweighting Monte Carlo simulations to predict the pressure composition diagrams for the binary mixtures DME + SO(2) at 363.15 K and DME + CO(2) at 335.15 and 308.15 K. For the DME + SO(2) mixture, simulation is able to qualitatively reproduce the minimum pressure azeotropy observed experimentally for this mixture, but quantitative errors exist, suggesting that multibody effects may be important in this system. For the DME + CO(2) mixture, simulation is able to predict the pressure-composition behavior within 1% of experimental data. Simulations in the isobaric-isothermal ensemble are used to determine the microstructure of DME + SO(2) and DME + CO(2) mixtures. The DME + SO(2) shows weak pairing between DME and SO(2) molecules, while no specific pairing or aggregation is observed for mixtures of DME + CO(2).  相似文献   

18.
Monte Carlo molecular simulations of the hydration of K-saturated Wyoming-type montmorillonite at constant stress in the NPzzT ensemble and at constant chemical potential in the grand canonical muVT ensemble, under basin-like conditions of 353 K and 625 bar, show a strong tendency of the K+ ions to adhere to the siloxane surface, forming predominant inner-sphere complexes with tetrahedral oxygen atoms and adsorbed water molecules. Simulations in the grand canonical ensemble predict that none of the K-montmorillonite hydrates, the one-, two-, and three-layer hydrates, are stable in this environment of high depth, temperature, and pressure. The most nearly stable configuration corresponds to the one-layer hydrate, characterized by a d001 spacing of 12.75 A, the adsorbed water being 60 molecules/layer or 180.83 mg of H2O/g of clay, an internal energy of -22.73 kcal/mol, an interlayer density of 0.365 g/mL, and a pressure tensor, Pzz, of 1999.9 bar. The interlayer structure consists of two close layers of water molecules 0.50 A from the midplane, with broad shoulders on the sides, the protons oriented toward the midplane and the siloxane surfaces, and the K+ ions close to the clay surfaces and on the interlayer midplane.  相似文献   

19.
A series of 20 ps ab initio molecular dynamics simulations of water at ambient density and temperatures ranging from 300 to 450 K are presented. Car-Parrinello (CP) and Born-Oppenheimer (BO) molecular dynamics techniques are compared for systems containing 54 and 64 water molecules. At 300 K, an excellent agreement is found between radial distribution functions (RDFs) obtained with BO and CP dynamics, provided an appropriately small value of the fictitious mass parameter is used in the CP simulation. However, we find that the diffusion coefficients computed from CP dynamics are approximately two times larger than those obtained with BO simulations for T>400 K, where statistically meaningful comparisons can be made. Overall, both BO and CP dynamics at 300 K yield overstructured RDFs and slow diffusion as compared to experiment. In order to understand these discrepancies, the effect of proton quantum motion is investigated with the use of empirical interaction potentials. We find that proton quantum effects may have a larger impact than previously thought on structure and diffusion of the liquid.  相似文献   

20.
The hydration of Na-saturated Wyoming-type montmorillonite is investigated by Monte Carlo simulations at constant stress in the NP(zz)T ensemble and at constant chemical potential in the microVT ensemble, at the sedimentary basin temperature of 353 K and pressure of 625 bar, equivalent to 2-4 km depth. The simulations use procedures established in Chavez-Paez et al. [J. Chem. Phys. 114, 1405 (2001)]. At these conditions, simulations predict a single stable form of 1,2-water layer Na-montmorillonite, containing 164.38 mg/g or 53.37 molecules/layer of adsorbed water and having a spacing of 12.72 A. The corresponding density is 0.32 g/ml. Sodium ions are coordinated with six molecules of water separated 2.30-2.33 A. Water molecules are closer to the central interlayer plane and the spacing is larger than that at 300 K and 1 bar. The interlayer configuration consists of two symmetrical layers of oriented water molecules 1.038 A from the central plane, with the hydrogen atoms in two outermost layers, 3.826 A apart, and the sodium ions on the central plane located between the water layers. The interlayer configuration can be considered to be a stable two-layer intermediate between the one- and two-layer hydrates. Our simulations do not predict formation of other hydrates of Na-montmorillonite at 353 K and 615 bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号