首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
米程 《大学化学》2016,31(11):81-82
阐释了反斯托克斯光的发光原理.根据荧光的定义,得出反斯托克斯光不属于荧光的结论.指出了仪器分析课程中存在的概念性错误,简要分析了错误原因.  相似文献   

2.
相干反斯托克斯喇曼光谱(Coherent Anti-Stokes Raman Spectra,简称CARS)是一种非线性光学混频过程。同时使用两条入射激光束聚焦于样品,输出相当于反-斯托克斯频率光束。量子效率可达1%,散射强度比自发喇曼谱高10~5倍以上,连续CARS谱分辩率为0.01cm~(-1)。这种具有高空间分辩、高抗荧光干扰、高分辩率及高效率等特点的CARS技术,  相似文献   

3.
4.
设计、合成了一种基于巴比妥酸衍生物的具有D-π-A结构的光学探针3。该探针能够作为一种高度灵敏和选择性的次氯酸指示剂,快速实现对次氯酸的比色和荧光信号(开-关)的双响应(约15 s)。推测的响应机制是ClO-与C=C之间发生了亲电加成和氧化裂解反应,导致探针的D-π-A结构遭到破坏,从而阻断了其分子内电荷转移(intramolecular charge transfer,ICT)进程。探针只需一步即可合成,同时具有红光发射(628 nm)和较大的斯托克斯位移(158 nm),检测限(limit of detection,LOD)低至14 nmol·L-1。此外,探针还表现出低细胞毒性,并成功应用于活细胞成像。  相似文献   

5.
设计、合成了一种基于巴比妥酸衍生物的具有 D-π-A结构的光学探针 3。该探针能够作为一种高度灵敏和选择性的次氯酸指示剂, 快速实现对次氯酸的比色和荧光信号(开-关)的双响应(约 15 s)。推测的响应机制是 ClO-与 C=C之间发生了亲电加成和氧化裂解反应, 导致探针的 D-π-A 结构遭到破坏, 从而阻断了其分子内电荷转移(intramolecular charge transfer, ICT)进程。探针只需一步即可合成, 同时具有红光发射(628 nm)和较大的斯托克斯位移(158 nm), 检测限(limit of detection, LOD)低至14 nmol·L-1。此外, 探针还表现出低细胞毒性, 并成功应用于活细胞成像。  相似文献   

6.
基于飞秒再生放大器及飞秒光学参量放大器输出的激光脉冲, 搭建了宽带时间分辨相干反斯托克斯拉曼散射(CARS)测试装置, 并利用该装置研究了氢气与空气混合气体中氢气的相对含量, 探测相对延时与CARS光谱之间的关系. 通过调整延时, 获得了无非共振背景干扰的氢气CARS信号. 实验中测得的CARS信号强度与氢气浓度(分压)的平方呈良好的线性关系, 符合CARS理论预测. 同时测得的实验数据的信噪比表明: 在当前的实验条件下, 在氢气与空气混合气的总压为0.1 MPa时, 该装置可以对氢气的浓度进行测量, 且其检测极限可低至0.2%. 本文还利用该装置对三联吡啶苯乙炔Pt 配合物-Co 配合物-三乙醇胺(TEOA)的三元化学催化体系的产氢动力学行为进行了研究, 通过改变pH值讨论了该催化体系的产氢动力学机制. 结果表明过高的质子浓度会降低体系的产氢效率, 这可能是因为在酸性条件下, 作为质子和电子供体的三乙醇胺分解被抑制, 电子供应中断, 导致产氢反应的停止.  相似文献   

7.
肝损伤是影响公众健康的重大问题之一, 已经引起了人们越来越多的关注. 而过表达的过氧化亚硝酸盐(ONOO?)在肝损伤等疾病的发病机制中起着重要作用, 被认为是一种与早期肝损伤密切相关的生物活性分子. 因此, 为了探究ONOO?在肝损伤过程中的作用, 开发可以实现肝损伤过程中ONOO?高选择性和实时检测的分析方法具有重要意义. 本文报道了一种具有大斯托克斯位移的远红光至近红外(FR-NIR)ONOO?荧光探针. 由于该探针具有大的斯托克斯位移, 可以有效消除光谱重叠和自吸收的干扰, 从而显著提高成像的信噪比. 此外, 该探针对ONOO?具有高的灵敏度(检出限为25.8 nmol/L)和良好的选择性, 被成功用于药物诱导肝损伤过程中ONOO?信号的成像检测.  相似文献   

8.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

9.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

10.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

11.
The 5145 Å laser line was used to excite gaseous bromine in order to observe the resonance Raman effect. In the Stokes side, strong resonance fluorescence overwhelm, therefore the resonance Raman scattering could not be detected. However, in the anti-Stokes side, four resonance Raman peaks were observed. The corresponding transitions are Δν= ?1 to ?4. The resonance Raman spectrum excited by the 4880 Å laser line was also presented for comparison.  相似文献   

12.
An ultraviolet absorption, as well as Stokes and anti-Stokes Raman resonance scattering of spectroscopically pure SiO2 was investigated by flash photolysis technique. The whole spectrum of 'absorption and scattered bands' was recorded photographically in ultraviolet. A resonance absorption line was observed at 288.2 nm, without structure, while scattered lines were observed at 285-288.2 and 288.2-290 nm.  相似文献   

13.
We present a complete perturbation theory of stimulated Raman scattering (SRS), which includes the new experimental technique of femtosecond stimulated Raman scattering (FSRS), where a picosecond Raman pump pulse and a femtosecond probe pulse simultaneously act on a stationary or nonstationary vibrational state. It is shown that eight terms in perturbation theory are required to account for SRS, with observation along the probe pulse direction, and they can be grouped into four nonlinear processes which are labeled as stimulated Raman scattering or inverse Raman scattering (IRS): SRS(I), SRS(II), IRS(I), and IRS(II). Previous FSRS theories have used only the SRS(I) process or only the "resonance Raman scattering" term in SRS(I). Each process can be represented by an overlap between a wave packet in the initial electronic state and a wave packet in the excited Raman electronic state. Calculations were performed with Gaussian Raman pump and probe pulses on displaced harmonic potentials to illustrate various features of FSRS, such as high time and frequency resolution; Raman gain for the Stokes line, Raman loss for the anti-Stokes line, and absence of the Rayleigh line in off-resonance FSRS from a stationary or decaying v=0 state; dispersive line shapes in resonance FSRS; and the possibility of observing vibrational wave packet motion with off-resonance FSRS.  相似文献   

14.
Relative intensities of the Stokes and anti-Stokes Raman lines associated with the I-I stretching mode of I2 and symmetric stretching mode of MnO?4 are presented. The data indicate that the maxima in the excitation profile of the anti-Stokes scattering are shifted from those of the Stokes scattering. The experimental Stokes/anti-Stokes intensity ratios agree with the theoretical values obtained with parameters from the electronic absorption spectra.  相似文献   

15.
In this review the basis, recent developments and applications of coherent anti-Stokes Raman scattering (CARS) in the fields of spectroscopy and microscopy are dialed with. The nonlinear susceptibility of the investigated molecule induced by pump and Stokes laser beams employed in the CARS technique is discussed. The relation between the nonlinear susceptibility, the different CARS laser intensities and the phase matching condition between them is also presented. The structure of CARS spectrum is analyzed as a function of the physical characteristics of the different employed lasers. This includes laser half widths, interference effects, cross-coherence and saturation of the resultant CARS signal by stimulated Raman scatter process (SRS). The different broadening mechanisms for CARS spectral line such as pressure and Doppler broadening are demonstrated. The recent progress in CARS for the in situ reaction flame diagnosis due to its suitability for detection of vibrational-rotational excited gas molecules present in the electronic ground state is discussed. CARS diagnosis for liquid- and solid-phases including the progress in polymeric materials is considered. The applications of CARS microscopy are reviewed in the view of its recent advances to study chemical and biological systems.  相似文献   

16.
A theoretical analysis of coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase resonances using femtosecond lasers is performed. The time-dependent density matrix equations for the femtosecond CARS process are formulated and manipulated into a form suitable for solution by direct numerical integration (DNI). The temporal shapes of the pump, Stokes, and probe laser pulses are specified as an input to the DNI calculations. It is assumed that the laser pulse shapes are 70 fs Gaussians and that the pulses are Fourier-transform limited. A single excited electronic level is defined as an effective intermediate level in the Raman process, and transition strengths are adjusted to match the experimental Raman polarizability. The excitation of the Raman coherence is investigated for different Q-branch rotational transitions in the fundamental 2330 cm(-1) band of diatomic nitrogen, assuming that the pump and Stokes pulses are temporally overlapped. The excitation process is shown to be virtually identical for transitions ranging from Q2 to Q20. The excitation of the Raman coherences is also very efficient; for laser irradiances of 5x10(17) W/m2, corresponding approximately to a 100 microJ, 70 fs pulse focused to 50 microm, approximately 10% of the population of the ground Raman level is pumped to the excited Raman level during the impulsive pump-Stokes excitation, and the magnitude of the induced Raman coherence reaches 40% of its maximum possible value. The theoretical results are compared with the results of experiments where the femtosecond CARS signal is recorded as a function of probe delay with respect to the impulsive pump-Stokes excitation.  相似文献   

17.
The efficient conversion of the second and third harmonics of a Nd YAG laser to near UV radiation in the 395–500 nm range by stimulated Stokes (and anti-Stokes) Raman scattering (SRS) in a 1 m Raman oscillator containing compressed H2 or D2 is used as an excitation source for spontaneous resonance Raman spectroscopy (RRS). SRS excited RR spectra are shown for the anion radical of tetracyanoquinodimethane (TCNQ).  相似文献   

18.
A theory is developed for three-laser electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitric oxide (NO). A vibrational Q-branch Raman polarization is excited in the NO molecule by the frequency difference between visible Raman pump and Stokes beams. An ultraviolet probe beam is scattered from the induced Raman polarization to produce an ultraviolet ERE-CARS signal. The frequency of the ultraviolet probe beam is selected to be in electronic resonance with rotational transitions in the A (2)Sigma(+)<--X (2)Pi (1,0) band of NO. This choice results in a resonance between the frequency of the ERE-CARS signal and transitions in the (0,0) band. The theoretical model for ERE-CARS NO spectra has been developed in the perturbative limit. Comparisons to experimental spectra are presented where either the probe laser was scanned with fixed Stokes frequency or the Stokes laser was scanned with fixed probe frequency. At atmospheric pressure and an NO concentration of 100 ppm, good agreement is found between theoretical and experimental spectral peak locations and relative intensities for both types of spectra. Factors relating to saturation in the experiments are discussed, including implications for the theoretical predictions.  相似文献   

19.
The ultraviolet absorption and emissions as well as Stokes and anti-Stokes Raman scatterings of spectroscopically pure 5H-dibenzo(a,d)cycloheptene-5-ol were investigated by flash and laser-flash photolysis technique in solution at room temperature and at 77K. The whole spectrum, absorption, excitation, prompt and delayed fluorescence, T-T absorption spectra were recorded photographically and photoelectrically in the ultraviolet and visible region and phosphorescence spectrum, Stokes, anti-Stokes scatterings were recorded at 77K.  相似文献   

20.
A theoretical expression is developed for femtosecond coherent anti-Stokes Raman scattering (CARS) to quantitatively account for the vibrational line shape in the presence of nonresonant signal. The contributions of the resonant and nonresonant components are extracted from the emitted signal line shape as a function of Stokes wavelength and as a function of the temporal overlap of the two pump pulses (for spectrally resolved femtosecond CARS). The theory is compared to the measured spectra of the oxygen vibrational transition DeltaG(01)=1556.4 cm(-1) for temporal detunings of 0 and 700 fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号