首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
咔唑类衍生物具有良好的空穴传输性能和较高的三重态能级,在有机电致发光器件中一般用来构建空穴传输材料和主体材料。本文通过在联咔唑的3和6位引入具有电子传输能力的氰基,设计合成了一种以双咔唑二聚体为分子骨架的新型双极性有机电致发光主体材料6,6’-双氰基-9,9’-二苯基-3,3’-联咔唑(BCzDCN),研究了其发光性能、热稳定性和电化学性质。低温磷光发射光谱测试表明BCzDCN的三重态能级高于传统的天蓝色磷光掺杂材料双(4,6-二氟苯基吡啶-N,C2’)吡啶甲酰合铱(FIrpic)。以BCzDCN为主体材料,FIrpic和双(4-苯并噻吩)[3,2-C]吡啶-N,C2’)乙酰丙酮合铱(PO-01)分别为蓝色和黄色磷光掺杂材料,制备了蓝色和白色有机磷光发光二极管器件。器件的最大电流效率分别达到34.6 cd/A和59.0 cd/A。并且在1000 cd/m2亮度下的效率滚降仅有4.1%和5.1%。  相似文献   

2.
姜鸿基 《高分子科学》2017,35(5):611-622
Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene)(PB13CZ), poly(3,6-9-decyl-carbazole-altbis(4-phenyl)(phenyl) phosphine oxide)(PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(diphenyl) phosphine oxide)(PTPPO13CZ) and poly(3,6-9-decyl-carbazole-alt-bis(3-phenyl)(phenyl) phosphine oxide)(PTTPO27CZ) were synthesized, and their thermal, photophysical properties and device applications were further investigated to correlate the chemical structures with the photoelectric performance of bipolar host materials for phosphorescent organic light emitting diodes. All of them show high thermal stability as revealed by their high glass transition temperatures and thermal decomposition temperatures at 5% weight loss. These polymers have wide band gaps and relatively high triplet energy levels. As a result, the spin coating method was used to prepare the green phosphorescent organic light emitting diodes with polymers PTPPO38 CZ, PTPPO13 CZ and PTTPO27 CZ as the typical host materials. The green device of polymer PTPPO38 CZ as host material shows electroluminescent performance with maximum current efficiency of 2.16 cd·A~(-1), maximum external quantum efficiency of 0.7%, maximum brightness of 1475 cd·m~(-2) and reduced efficiency roll-off of 7.14% at 600 cd·m~(-2), which are much better than those of the same devices hosted by polymers PTTPO27 CZ and PTPPO13 CZ.  相似文献   

3.
以4-苯甲酰吡啶、吩噁嗪和9,9-二甲基吖啶为原料,合成了两种蓝色磷光主体材料:[(2-溴-5-吩噁嗪-10-基)苯基](吡啶-4-基)甲酮(BPPPM),[2-溴-5-(9,9-二甲基-9H-吖啶-10-基)苯基](吡啶-4-基)甲酮(BDPPM)。并用~1H NMR、~(13)C NMR和元素分析对其结构进行了表征,研究了它们的光电性质和热性质。结果表明,BPPPM和BDPPM的光学带隙(Eg)分别为3.31和2.64 e V;它们的发射峰分别位于405和435 nm,发深蓝和蓝色荧光;它们均具有较高的三线态能级(2.70,2.65e V),可与蓝色磷光客体材料FIrpic(2.65e V)的三线态能级相匹配;它们均具有匹配的HOMO(-5.45、-5.35e V)与LUMO能级(-2.14、-2.82e V),且其HOMO、LUMO轨道的电子云分离突出,具有良好的双极性质;此外它们均具有较好的热稳定性和成膜性。  相似文献   

4.
A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization. The germanium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest efficiency of 0.301 lm/W at 6.2 V. The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%. The results are quite promising and promise that as its analogs of fluorene and silafluorene, germafluorene is an excellent building block for blue light-emitting polymers and host materials. Supported by the National Natural Science Foundation of China (Grant Nos. 60325412, 90406021, and 50428303) and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NUPT) (Grant No. NY206073)  相似文献   

5.
以氟代二苯基苯并咪唑为主配体,结合不同的辅助配体乙酰丙酮(对应配合物Ir-1a~Ir-3a)、2-吡啶甲酸(对应配合物Ir-1b~Ir-3b)和2-(5-三氟甲基-2H-[1,2,4]三唑-3-基)-吡啶(tftp,对应配合物Ir-1c~Ir-3c),设计并合成了9个新颖的苯并咪唑铱(Ⅲ)配合物Ir-1a~Ir-3c....  相似文献   

6.
By adopting a phosphorescent host/guest system consisting of blue iridium complex as host and a series of phosphorescent dyes as guest, efficient and low-voltage monochromic organic light-emitting devices(OLEDs) were fabricated. The devices with blue iridium host have higher power efficiency than the device with the conventional host 4,4'-N,N'-dicarbazole-biphenyl. The enhancement of the maximum power efficiency in green phosphorescent device can reach 37.2%. Dichromatic white OLED could be achieved by simply adjusting the concentration of the orange dyes. At a brightness of 1000 cd/m2, the power efficiency of the white device is 8.4 lm/W with a color rendering index of 76.  相似文献   

7.
以联咔唑作为电子给体,二苯基磷氧基团作为电子受体,设计合成了双极性蓝色磷光主体材料6,6'-二(二苯基磷氧基)-9,9'-二己基-3,3'-联咔唑(DPDBC)。通过紫外-可见(UV-Vis)、荧光、低温磷光、循环伏安法、热重分析(TGA)、差热分析(DSC)和密度泛函理论(DFT)对其性能及轨道能级等进行了研究。结果表明,化合物DPDBC在CH2Cl2稀溶液中有两个吸收峰,最大吸收峰位于306 nm;它的荧光发射峰位于420 nm,属于深蓝色荧光;DPDBC的低温磷光光谱的第一发射峰位于447 nm,其三重态能级为2.77 eV,与蓝色磷光客体材料FIrpic (2.62 eV)的能级相匹配;测定其循环伏安特性曲线,计算得到它的HOMO能级为-5.48 eV,与阳极ITO的功函(-4.5~-5.0 eV)相匹配,LUMO能级为-2.36 eV,接近于电子传输材料PBD(-2.82 eV),表明它具有双极性能;TGA显示其分解温度为410℃,表明热稳定性能优良,DSC显示其Tg温度为140℃,表明其具有无定形态结构及良好的成膜性能。因此,DPDBC是一种集双极性传输性能于一体,同时又具有优良热稳定性能的潜在蓝色磷光主体材料。  相似文献   

8.
A new carbazole–fluorenyl hybrid compound, 3,3′(2,7‐di(naphthaline‐2‐yl)‐9H‐fluorene‐9,9‐diyl)bis(9‐phenyl‐9H‐carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue‐violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2‐phq)3 in NFBC, a highly efficient orange organic light‐emitting diode (OLED) with a maximum efficiency of 32 cd A?1 (26.5 Lm W?1) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll‐off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A?1 at a luminance of 1000 and 10 000 cd m?2, respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W?1 (21.9 cd A?1) was also obtained.  相似文献   

9.
Simple is good! Based on biphenyl molecules, two bipolar host materials with high triplet energies have been rationally designed, synthesized, and fully characterized. Deep blue phosphorescent organic light-emitting diodes, which employ the new hosts and an iridium(III) complex as triplet emitter, show a maximum current efficiency of 40 cd A(-1), a maximum power efficiency of 36 lm W(-1), and a maximum external quantum efficiency of 19.5 %.  相似文献   

10.
A series of platinum(II) complexes bearing tridentate cyclometalated C^N^N (C^N^N=6-phenyl-2,2'-bipyridine and π-extended R-C^N^N=3-[6'-(naphthalen-2'-yl)pyridin-2'-yl]isoquinoline) ligands with fluorene units have been synthesised and their photophysical properties have been studied. The fluorene units are incorporated into the cyclometalated ligands by a Suzuki coupling reaction. An increase in the π-conjugation of the cyclometalated ligands confers favourable photophysical properties compared to the 6-phenyl-2,2'-bipyridine analogues. The fluorene-based platinum(II) complexes display vibronic-structured emission bands with λ(max)=558-601 nm, and high emission quantum yields up to 0.76 in degassed dichloromethane. Their emissions are tentatively assigned to excited states with mixed (3)IL/(3)MLCT parentage (IL=intraligand, MLCT=metal-to-ligand charge transfer). The crystal structures of these platinum(II) complexes reveal extensive Pt(II)···π and/or π-π interactions. The fluorene-based platinum(II) complexes are soluble in organic solvents, have high thermal stability with decomposition temperature >350 °C, and can be thermally vacuum-sublimed or solution-processed as phosphorescent dopants for the fabrication of organic light-emitting diodes (OLEDs). A monochromic OLED with 3d as dopant (2 wt%) fabricated by vacuum deposition gave a current efficiency of 14.7 cd A(-1) and maximum brightness of 27000 cd m(-2). A high current efficiency (9.2 cd A(-1)) has been achieved in a solution-processed OLED using complex 3f (5 wt%) doped in a PVK (poly(9-vinylcarbazole)) host.  相似文献   

11.
The synthesis of electrophosphorescent chelating polymers by Suzuki polycondensation of A-A- and B-B-type monomers is described, in which the fluorene-alt-carbazole (PFCz) segment is used as polymer backbone. By using alkyl-substituted ligands of iridium complex monomers, chelating copolymers with higher contents of iridium complex can be synthesized. Chemical and photophysical characterization confirm that the Ir complex is incorporated into the polymer backbone as one of the monomer repeat units by means of two 5-bromotolylpyridine ligands. Chelating polymers with Ir complexes in the conjugated polymer backbone show highly efficient energy transfer of excitons from the PFCz host segment to the Ir complex by an intramolecular trapping mechanism. The external quantum and luminous efficiencies of a device made with PFCzMppyIrhm4 copolymer reach 4.1 % ph/el (photons/electron) and 5.4 cd A(-1), respectively, at a current density of 32.2 mA cm(-2), an emission peak of 577 nm, and a luminance of 1730 cd cm(-2). Most important, the devices made from the chelating copolymers show no notable efficiency decay with increasing current density due to reduced concentration quenching and triplet-triplet (T-T) annihilation. This indicates that incorporation of the phosphorescent complex into the rigid conjugated polymer main chain is a new way to simultaneously realize high efficiency, long-term stability, and simple processing of phosphorescent polymer light-emitting diodes.  相似文献   

12.
Two novel dendrimer-like blue-emitting dinuclear cyclometalated iridium (III) complexes, namely (DNaTPA)2DBF(FIrpic)2 and (DPyTPA)2DBF(FIrpic)2, have been successfully synthesized and characterized. In which FIrpic is an iridium (III) bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolate blue-emitting phosphorescent chromophore core, DBF is a 2,7-diphenyl-9H-fluorene bridging core, DNaTPA and DPyTPA are deep blue-emitting fluorescent chromophores composed by rigid high-triplet-energy dendrons of triphenylamine-functionalized naphthalene or pyrene units, and the peripheral dendrons are connected with the ancillary ligand of the emitting core through nonconjugated ether linkage. Their photophysical, thermal, electrochemical, as well as electrophosphorescent properties were primarily studied. Both iridium (III) complexes exhibit high efficient blue emission in solution (38.5% and 19.2%) and a typical FIrpic emission in 1,3-bis(N-carbzolyl)benzene (mCP) matrix (27.0% and 24.1%). Simple bilayer phosphorescent organic light-emitting diodes (PHOLEDs) with a configuration of ITO/PEDOT:PSS/mCP:dopants/TmPyPB/Liq/Al achieved high efficiencies of 12.96 cd/A for current efficiency (CE), 6162 cd/m2 for brightness, 6.22% for external quantum efficiency (EQE), and 3.13 lm/W for power efficiency (PE) with Commission International de L'Eclairage (CIE) coordinates of (0.19 ± 0.01, 0.35 ± 0.02) at only 2 wt% blend of (DNaTPA)2DBF(FIrpic)2. (DPyTPA)2DBF(FIrpic)2-doped devices also reach efficiencies of (9.14 cd/A, 7167 cd/m2, 4.41%, 2.61 lm/W) at the same doping concentration. The results demonstrate that the introduction of dendritic blue-emitting fluorescent chromophore grafted into the blue phosphorescent chromosphere core through nonconjugated linkage is an efficient way to achieve high-efficiency sky-blue emission.  相似文献   

13.
Two new bipolar compounds, N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐4,4′′‐diamine ( 1 ) and N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐3,3′′‐diamine ( 2 ), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass‐transition temperatures of 109–129 °C and thermal decomposition temperatures of 501–531 °C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater π conjugation between the donor and acceptor moieties. A nondoped deep‐blue fluorescent organic light‐emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A−1 and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee’s blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A−1 and a maximum power efficiency of 68.3 lm W−1; whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A−1, and a maximum power efficiency of 9.8 lm W−1. The relationship between the molecular structures and optoelectronic properties are discussed.  相似文献   

14.
设计合成了一种基于三嗪类的新型双极性蓝色磷光主体材料[4-(4,6-二-α-萘氧基-1,3,5-三嗪-2-基)苯基]9-咔唑(NOTPC),并对其结构进行了表征。通过紫外-可见(UV-Vis)吸收、荧光、低温磷光、循环伏安法、热重分析(TGA)、差热分析(DSC)和密度泛函理论(DFT)对其性能及结构进行了研究。结果表明,NOTPC在CH2Cl2稀溶液中的吸收峰位于341和374 nm;发射峰位于478 nm;NOTPC的低温(77 K)磷光光谱的第一发射峰位于442 nm,其三线态能级为2.80 eV,与蓝色磷光材料FIrpic(2.62 eV)的能级相匹配;NOTPC的HOMO主要分布在苯基咔唑单元,而LUMO主要定域在三嗪环上。其HOMO能级为-5.40 eV,与阳极ITO的功函(-4.5~-5.0 eV)相匹配,LUMO能级为-2.32 eV,接近于电子传输材料PBD(-2.82 eV),NOTPC表现出双极传导性能, 且热稳定性良好。  相似文献   

15.
By linking the carbazole unit to the nitrogen atom of acridone through phenyl or pyridyl, two compounds, named 10-(4-(9H-carbazol-9-yl)phenyl)acridin-9(10H)-one (AC-Ph-Cz) and 10-(5-(9H-carbazol-9-yl)pyridin-2-yl)acridin-9(10H)-one (AC-Py-Cz) were designed and synthesized. These two materials, characterized with highly twisted and rigid structure, good thermal stability, and balanced carrier-transporting properties, were employed as host materials for green phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes (OLEDs). The carbazole group, despite its small contribution to the highest occupied molecular orbitals (HOMOs) of these two materials, plays an essential role as an intramolecular host in energy delivering and improving the hole transporting ability of these two hosts. The incorporation of the electron-deficient pyridyl group as a linking group slightly improves the electron transporting capability of AC-Py-Cz. The green phosphorescent OLED (PhOLED) based on AC-Py-Cz exhibited excellent device performance with a turn-on voltage of 2.5 V, a maximum power efficiency and an external quantum efficiency (ηext) of 89.8 lm W−1 and 25.2 %, respectively, benefitting from the better charge-balancing ability of AC-Py-Cz host due to the presence of the pyridyl bridge. More importantly, all the devices based on these two hosts showed low efficiency roll-off at high brightness due to the suppressed non-radiative transition in the emitting layer. In particular, the AC-Py-Cz-hosted green PhOLED exhibited an efficiency roll-off of 1.6 % from the maximum next at a high brightness of 1000 cd m−2 and a roll-off of 15.9 % at an extremely high brightness of 10000 cd m−2. This study manifests that acridone-based host materials have great potential in fabricating OLEDs with low efficiency roll-off.  相似文献   

16.
A novel blue light emitting polymer was designed and synthesized via alternative conjugated 9,9-dioctylfluorene and 9-(6-(9H-carbazol-9-yl)hexyl)-9H-carbazole, named PF2Cz. It exhibited high thermal stability, good film morphology and strong deep-blue emission peaks at 408 and 429?nm in film. The triplet energy level of PF2Cz (ET?=?2.30?eV) was also improved. Non-doped and doped devices were both prepared by solution process to characterize the electroluminescent (EL) properties of PF2Cz. In non-doped devices, PF2Cz acted as blue emitter which exhibited a Commission Internation de L'Eclairage (CIE) coordinate of (0.164, 0.102) and a external quantum efficiency (EQE) values of 1.28%. Moreover, the doped phosphorescent devices utilized PF2Cz as host material obtained a closed-white light emission with a content of 1?wt% dopant. All these results indicated that the fluorene-carbazole derivatives could be a promising molecular design strategy for the synthesis of blue light and host organic semiconductors.  相似文献   

17.
Vinylsilafluorene (VSiF) was successfully synthesized and copolymerized with vinylcarbazole and methyl methacrylate via free radical copolymerization for the first time. The synthesis, photophysical properties, computational modeling studies, and organic light-emitting devices of the VSiF copolymers were presented. The good coordinated photoluminescent (PL) spectra with the absorption of blue light-emitting materials and the high energy band-gap of the VSiF copolymers were observed. Higher triplet band gap (3 E g) to host the blue phosphorescent emitters and better HOMO and LUMO than PVK for electron and hole injection and transportation of the VSiF model compounds were revealed by density functional theory (DFT) calculations. The preliminary device results in applications of these copolymers as host materials for green phosphorescent emitters demonstrate the copolymers of VSiF and vinylcarbazole have comparable device performance of polyvinylcarazole (PVK), suggesting a bright future of VSiF as building blocks for host materials.  相似文献   

18.
Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361–386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127–139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.  相似文献   

19.
带烷氧基的苯基蒎烯吡啶铱配合物的合成及光物理性质   总被引:2,自引:0,他引:2  
合成了一组新型的带有烷氧基团的铱(Ⅲ)配合物[Ir(RO-pppy)3], 并进行了结构表征. 该组配合物在~496 nm处有较强的三重态发射, 磷光量子产率为0.4~0.6, 三重态寿命为2~4 μs. 结果表明, 连接了长链的配合物可减少分子间的聚集, 可以用作有机电致发光器件中的磷光材料.  相似文献   

20.
A series of novel asymmetrical fused compounds containing the backbone of fluorene[2,3‐b]benzo[d]thiophene (FBT) were effectively synthesized and fully characterized. Single‐crystal X‐ray studies demonstrated that the length of the substituent side chains greatly affects the solid‐state packing of the obtained fused compounds. DFT, photophysical, and electrochemical studies all showed that the FBTs have large band gaps, low‐lying HOMO energy levels, and therefore good stability toward oxidation. Moreover, the substituents strongly influence the fluorescence properties of the resulting FBT derivatives. The di‐n‐hexyl compound exhibits intense fluorescence in solution with the highest quantum yield of up to 91 %. Solution‐processed green phosphorescent organic light‐emitting diodes with the di‐n‐butyl derivative as the host material exhibited a maximum brightness of 14 185 cd m?2 and a luminescence efficiency of 12 cd A?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号