首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of -histidine on a copper electrode from H2O- and D2O-based solutions is studied by means of surface-enhanced Raman scattering (SERS) spectroscopy. Different adsorption states of histidine are observed depending upon pH, potential, and the presence of the SO2−4 and Cl ions. In acidic solutions of pH 1.2 the imidazole ring of the adsorbed histidine remains protonated and is not involved in the chemical coordination with the surface. The SO2−4 and Cl ions compete with histidine for the adsorption sites. In solutions of pH 3.1 three different adsorption states of histidine are observed depending on the potential. Histidine adsorbs with the protonated imidazole ring oriented mainly perpendicularly to the surface at potentials more positive than −0.2 V. Transformation of that adsorption state occurs at more negative potentials. As this takes place, histidine adsorbs through the α-NH2 group and the neutral imidazole ring. The Cl ions cause the protonation and detachment of the α-NH2 group from the surface and the formation of the ion pair NH+3 … Cl can be observed. In the neutral solution of pH 7.0 histidine adsorbs through the deprotonated nitrogen atom of the imidazole ring and the α-COO group at E ≥ −0.2 V. However, this adsorption state is transformed into the adsorption state in which the α-NH2 group and/or neutral imidazole ring participate in the anchoring of histidine to the surface, once the potential becomes more negative. In alkaline solutions of pH 11.9 histidine is adsorbed on the copper surface through the neutral imidazole ring.  相似文献   

2.
Kinetics of the oxygen reduction reaction (orr) and the hydrogen evolution–oxidation reactions (her/hor) were studied on the Pt(111) and Pt(100) surfaces in 0.05 M H2SO4 containing Cl. The orr is strongly inhibited on the (100) surface modified by adsorbed Cl (Clad), and it occurs as a 3.5e reduction via solution phase peroxide formation. In the hydrogen adsorption (Hupd) potential region, the orr is even more inhibited, and corresponds only to a 2 e reduction at the negative potential limit where the electrode is covered by one monolayer of Hupd and some (unknown) amount of Clad. On the Pt(111)---Clad surface, the orr is inhibited relatively little (in addition to that caused by strong bisulfate anion adsorption on this surface), and the reaction pathway is the same as in Cl free solution. The kinetics of the hor on Pt(111) are the same in pure solution and in a solution containing Cl, since Clad does not affect platinum sites required for the breaking of the H---H bond. A relatively large inhibition of the hor is observed on the (100) surface, implying that strongly adsorbed Clad is present on the surface even near 0 V.  相似文献   

3.
Surface enhancement mechanism of Raman scattering from molecules adsorbed on silver oxide colloids is reported. Absorption spectra and Raman spectra of the cyanine dye D266 and pyridine molecules adsorbed on Ag2O colloids, and the influences of S2O32− and OH on the SERS are studied respectively. The results indicate that ‘chemical' enhancement is dominant in Ag2O colloidal solution. Surface complexes of adsorbed molecules and small silver ion clusters Agn+ as the SERS active sites make an important contribution to surface enhanced Raman scattering (SERS). At these active sites, charge transfer between the adsorbed molecules and the small silver ion clusters is the main enhancement origin. The enhancement factor of D266 adsorbed on Ag2O colloids is theoretically estimated with the excited-state charge transfer model, which is roughly in accordance with the experiments.  相似文献   

4.
We studied the adsorption behavior of Cu(II) and Mn(II) on the surface of titanium dioxide over the pH range from 2.0 to 11.5. The titanium dioxide we used in these experiments was prepared by hydrolyzing TiCl4 and had a surface area of 113.7 m2 g−1. All suspensions, which were 9.04 × 10−3 M in NaClO4, contained 20 m2 liter−1 of oxide surface and divalent metal ion concentrations sufficient (at full adsorption from solution) to cover the available surface with one-half, one, and four layers of close-packed, hydrated ions. Both divalent ions began adsorption below titanium dioxide's isoelectric point (pH = 6.2). Cu2+ adsorption was accompanied by net OH uptake from solution and it was inferred that the titania surface also provided OH for Cu2+ adsorption. ESR spectra demonstrate the coexistence of two distinct forms adopted by these metal ions on the surface. A portion of the adsorbed metal ions occupies sites magnetically isolated one from another, as evidenced by the paramagnetic behavior of this form. The majority of the metal ions, however, exist in hydrous-metal-ion clusters in which spin-exchange coupling of the electron dipoles determines the magnetic behavior. Electrophoretic mobility measurements indicate that ions adsorbed at isolated sites exert a stronger influence on the electrophoretically measured charge of the suspension particles than ions in clusters. Even though these experiments were performed in the absence of oxygen, we observed the oxidation of a limited amount of the Mn(II) on the surface as low as pH = 5. Presumably this occurs as a result of electron transfer between photo-induced electron holes and Mn(II) on the surface.  相似文献   

5.
The kinetics of electrolyte extraction into water and the electrosurface properties (adsorption of potential-determining ions H+ and OH and ζ potential) of five fractions of schungite III (particle sizes of < 5, 50–100, 160–400, 400–1000, and 1600–2500 µm) are studied in aqueous NaCl, CaCl2, and AlCl3 solutions at different pH values. It is shown that, in water and NaCl and CaCl2 solutions, the point of zero charge (PZC) of the particles with sizes of 50–100 and 160–400 µm is observed at pH 4.0 and is independent of the electrolyte concentration. The isoelectric point (IEP) for small (<5 µm) schungite III particles is observed at pH 2.8. The IEP position is independent of CaCl2 concentration, but it shifts to pH 2.4 when NaCl concentration increases to 0.1 M. The disclosed differences in the PZC and IEP values may be caused by different compositions of particles of different fractions. In a 10−5 M AlCl3 solution, schungite particles demonstrate three IEPs (pH 3.0, 4.5, and 7.4) due to different degrees of AlCl3 hydrolysis at different pH values.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 450–457.Original Russian Text Copyright © 2005 by Aleinikov, Lorentsson, Chernoberezhskii.  相似文献   

6.
The electrochemical behavior of Cu electrodes in Cl solutions was studied in a wide range of pH. The results were compared with those obtained in solutions containing F, Br, I and So2−4 ions at pH 8.5, and discussed in terms of the competitive formation of Cu2O and CuCl films on the Cu surface and the influence of CuCl on the properties of Cu2O. At pH 8.5 or higher, Cu2O was formed first, whereas at pH 5.7 or lower the Cu2O film was formed on the Cu surface under the CuCl layer which was formed initially. It is believed that the Cu2O films doped with Cl ions exhibited poor protective properties against Cu corrosion.  相似文献   

7.
The surface charge and adsorption densities of Na+ and Cl ions at the zirconium dioxide/electrolyte interface have been determined as a function of pH for 0.1, 0.01 and 0.001 M solutions of NaCl. Using potentiometric titration of the surface hydroxy groups, it was found that the point of zero charge occurred at pH 4.3±0.15. The results are discussed in terms of site binding model of the electric double layer. The ionization and complexation constants have also been determined.  相似文献   

8.
When the sodium ion (Na+) concentration is increased above 0.5 mol-dm−3 (M), the concentrations of dissolved silica in aqueous sodium chloride (NaCl) and sodium nitrate (NaNO3) solutions decrease because of the salting out effect. On the other hand, the concentration of the dissolved silica in aqueous sodium sulfate (Na2SO4) solutions increases monotonously as the concentration of Na+ is increased above 0.5 M. The purpose of this study is to determine the reasons why the salting-out effect is not observed in Na2SO4 solutions. FAB-MS (Fast Atom Bombardment Mass Spectrometry) was used to sample directly the silica species dissolved in aqueous Na2SO4, NaCl, and NaNO3 solutions. In the FAB-MS spectra of these solutions, the peak intensity ratios of the linear tetramer to the cyclic tetramer largely increased for Na+ concentrations between (0.1 and 1) M. This shows that some characteristics of the Na2SO4 solutions are similar to those of the NaCl and NaNO3 solutions. In Na2SO4 solutions, however, when the concentration of Na+ is higher than 1 M, the peak intensity of the dimer is much higher than those of the other silicate complexes. In Na2SO4 solutions, the SO42− ion undergoes partial hydrolysis to form HSO4 and OH is produced. In particular, in the range where the concentration of SO42− is high, the pH of the solution increases slightly. This higher pH yields more dimers from the hydrolysis of silicate complexes. This increase in dimer production agrees with the observation that silica dissolves in sodium hydroxide (NaOH) solutions mainly as a dimer when the concentration of NaOH is less than 0.1 M. In Na2SO4 solutions at high concentrations, a salting-out effect is not observed for silica. This is due to the increase in the concentration of OH, which accelerates the hydrolysis of silica and results in dimer formation.  相似文献   

9.
The thermodynamic ‘total’ charge density is the charge to be supplied to the electrode to keep the applied potential constant when the electrode surface is increased by unity, while the extrathermodynamic ‘free’ charge density is the charge actually experienced by the diffuse layer ions. The total charge density at dioleoylphosphatidylcholine (DOPC) and octadecanethiol (ODT) monolayers and mixed ODT/DOPC bilayers self-assembled on mercury from aqueous solutions was determined from chronocoulometric single potential steps to a final potential negative enough to cause complete desorption of the film. The effect of different alkali metal ions and of tetramethylammonium on DOPC desorption was examined. The total charge for ODT monolayers and ODT/DOPC bilayers, +56±3 μC cm−2, agrees with the value obtained by integration of the current under the reductive desorption voltammetric peaks, only provided the scan rate is higher than 100 mV s−1. An approximate model of the interface of the ODT-coated electrode, which accounts for partial charge transfer from sulfur to mercury and for the degree of dissociation of the sulfhydryl group upon self-assembly, was employed to estimate the free charge density.  相似文献   

10.
The double-layer properties of colloidal RuO2, prepared by thermal decomposition of RuCl3 at 420°C, have been studied by potentiometric acid-base titrations in combination with electrophoretic mobility measurements. The point of zero charge (pzc) in KNO3 solutions was found to be pH 5.75 ± 0.05, and the isoelectric point (iep) is positioned at pH 5.8. From the total capacitance of the double layer at the pzc an electrochemical surface area of 21.5 m2/g has been found, which is equal to the BET surface area. The capacitance of the inner part of the double layer (Ci) is 300 μF/cm2, which is high compared to Ci on AgI and Hg, but of the same order as that commonly found for oxides. This subject is briefly discussed. The surface charge (σ0) as a function of pH could be fitted satisfactorily with a simple double-layer model. In the presence of KCl the pzc and the iep are shifted to higher and lower pH, respectively, indicating specific adsorption of Cl ions. The ionic composition of the double layer as a function of σ0 and the specific adsorption of Cl at the pzc have been calculated by a straightforward thermodynamic analysis combined with diffuse double-layer theory. Methylviologen (MV2+) also adsorbs specifically and at negative surface charges superequivalent adsorption can take place. In the presence of an excess of KNO3, specific adsorption of MV2+ is no longer noticeable. Some consequences for the catalytic reduction of water by RuO2 in the presence of MV2+ are considered.  相似文献   

11.
Ab-initio molecular orbital (MO) and direct ab initio dynamics calculations have been applied to the gas phase SN2 reaction F + CH3Cl → CH3F + Cl. Several basis sets were examined in order to select the most convenient and best fitted basis set to that of high-quality calculations. The Hartree–Fock (HF) 3−21+G(d) calculation reasonably represents a potential energy surface calculated at the MP2/6−311++G(2df,2pd) level. A direct ab initio dynamics calculation at the HF/3−21+G(d) level was carried out for the SN2 reaction. A full dimensional ab initio potential energy surface including all degrees of freedom was used in the dynamics calculation. Total energies and gradients were calculated at each time step. Two initial configurations at time zero were examined in the direct dynamics calculations: one is a near collinear collision, and the other is a side-attack collision. It was found that in the near collinear collision almost all total available energy is partitioned into two modes: the relative translational mode between the products (40%) and the C − F stretching mode (60%). The other internal modes of CH3F were still in the ground state. The lifetimes of the early- and late-complexes F … CH3Cl and FCH3 … Cl are significantly short enough to dissociate directly to the products. On the other hand, in the side-attack collision, the relative translation energy was about 20% of total available energy.  相似文献   

12.
The adsorption characteristics of a variety of metal-EDTA complexes onto hydrous oxides, principally aluminum oxide (γ-Al2O3), were examined in aqueous solution. Adsorption of these complexes increased with increasing proton concentration due to the formation of surface complexes between EDTA and the surface hydroxo groups, specifically the AlOH2+ surface groups. The pH-dependent adsorptive behavior and the magnitude of adsorption of the “free” EDTA species were similar to those of the metal complexes. The results also showed that the adsorption of “free” EDTA was exothermic, while the adsorption of Ni(II)-EDTA complexes was endothermic in the lower pH region (3.5) and exothermic at higher pH values (6.0). This implied that the surface preferred the NiHEDTA−1 species rather than the NiEDTA−2 species. Specific adsorption of the metal complexes was evidenced by the charge reversal exhibited by the γ-Al2O3 particles at the highest surface loadings. A quantitative model was formulated based on the pH-dependent speciation of the oxide surface, speciation of the metal complexes in solution, and ζ potential measurements. This model proved valid over a wide range of pH (3–10) and for both high (>50% coverage) and low (<10% coverage) surface loadings.  相似文献   

13.
The electrochemical oxidation of the hydroxide ion was studied on a gold rotating disc electrode (RDE), in aqueous NaOH solutions in the presence of lithium perchlorate as a supporting electrolyte. By potentiodynamic polarization within the limits −1.6 V and +1.6 V vs. SCE, it was demonstrated that the overvoltage of the OH ion oxidation reaction may be significantly reduced with a 5 min long delay at the vertex cathodic potential of −1.6 V. This finding was explained in terms of the type of gold oxide formed on the gold surface under different experimental conditions.  相似文献   

14.
The spectro-electrochemical behavior of carbonate and bicarbonate ions at the Au(111) electrode surface was studied using the infrared reflection absorption spectroscopy (IRAS). An absorption band caused by the adsorbed carbonate ions was observed in the wavenumber region of 1425–1511 cm−1 both in Na2CO3 and NaHCO3 solutions. It was concluded that the adsorbed carbonate ions co-ordinate with the electrode surface in the unidentate state with their symmetry axis normal to the substrate. This orientation is retained in the whole potential region where carbonate ions adsorb on the electrode surface in contrast to the behavior of the carbonate ions adsorbed on the Pt(111) electrode surface.  相似文献   

15.
The electrochemical behavior of the iron(III)/iron(II) couple was investigated in both complexing (Cl) and noncomplexing (ClO4) media in dimethylformamide (DMF), and the results were compared with the results obtained in aqueous solutions. The diffusion coefficients for iron(III) and iron(II) in DMF are larger in complexing medium than in noncomplexing medium, contrary to the results obtained in aqueous solutions. The heterogeneous electron transfer rate constants for the iron(III)/iron(II) couple obtained in DMF were found to be smaller in DMF solution as a result of the specific adsorption of DMF. The formal potential of the Fe(III)/Fe(II) couple in DMF is about 0.2 V less positive in noncomplexing medium as a result of the greater stabilization of iron(III) by the strongly cation-solvating DMF. The formal potential of the same couple in complexing medium (Cl) was found to be 0.5 V less positive due to a combination of solvation and complexation effects. Cyclic voltammetric investigations show a quasi-reversible electron transfer without any coupled chemical reaction.  相似文献   

16.
The sorption of SO2−4 and Cl ions into polypyrrole films has been studied by the radiotracer method under potential cycling and steady state conditions using labelled H2SO4 and HCl. Although a potential dependent migration and penetration of anions in the film can be detected, no strong correlation was found between the amount of charge consumed in the oxidation and reduction processes and the number of sorbed anions. The number of positively charged sites attracting anions into the film seems to be significantly lower than that expected from the amount of charge involved in the electrochemical transformations.  相似文献   

17.
This paper reports an investigation of the phenomenon of specific adsorption of halide ions on a Cu(100) surface using Monte Carlo simulations. The system was modeled by considering each ion in a water lamina placed between two copper walls. The potentials used in simulations were constructed by fitting to results of quantum calculations. The solvent contribution to the potential of mean force (pmf) was calculated for each of the four halide ions using the free energy perturbation method. Given the difficulty of finding a reliable ion–metal potential, several alternatives, representing extremal models, were tested in combination with the solvent mean force on the ions, F, Cl, Br or I. The results for the pmf on an ion near the metal surface are discussed in the light of the experimental data available. The sensitivity of the results to the type of ion–metal potential used in the simulations is stressed.  相似文献   

18.
The ion exchange of Pb2+ and Cl into calcium hydroxyapatite from aqueous solutions is studied at 293 K. Although the exchange of Cl into CaHAp and PbHAp was not observed, in the presence of both Pb2+ and Cl in aqueous solution the exchange of both Pb2+ and Cl into CaHAp occurred, and, at least at intermediate concentrations of HCl, a proportionality between the sorbed quantities of these two ions was observed. The dissolution of CaHAp is shown to be dependent upon the pH, while the quantity of Pb2+ exchanged into the solid is not a function of the proton content; consequently, the exchange is not primarily a dissolution–precipitation process.  相似文献   

19.
Adsorption behavior of anions at liquid (Ga-In)-electrode at a temperature of 305 K is studied by electrochemical impedance spectroscopy and cyclic voltammetry. The above-listed methods allowed evaluating the adsorbability of different ions. Equivalent circuit describing the experimental data in the presence and in the absence of ions Br and Cl is a contour comprising a resistance connected in series to a capacitance whose value remains constant over the frequency range from ∼300 Hz to 10 kHz. Analysis of the experimental data obtained by the mixed electrolyte method with excess of surface-inactive ion Cl and constant ionic strength 0.1 M in electrolyte solutions acidified down to pH 3 gave the charge of specifically adsorbed ions Br and Cl1) at the liquid (Ga-In)-electrode surface as 5.24 and 1.67 μC/cm2, respectively, at the adsorbate maximal concentration and zero-charge potential. These values are characteristic of very weak specific adsorption. The σ1 values found for the (Ga-In)-electrode were used in the calculations of different isotherms, aiming at the determination of adsorption parameters. The results of the study were compared with literature data obtained by different researchers for different metals in the presence of specifically adsorbing bromide and chloride ions.  相似文献   

20.
Oxygen reduction was studied for the first time using a single crystal electrode in a rotating disc-ring arrangement. The Au (311) surface shows a complex behaviour, with a very high activity in certain potential regions. The first electron transfer is rate determining in the region of 4-electron reduction. As with Au (100), a 4 e reduction changes into a 2 e process, which reverts back to a 4 ereaction at very negative potentials. Based on a general reaction scheme of O2 reduction, a map of the operating potential dependent reaction pathways was constructed. Nearly 60% of the mass flux of O2 undergoes a direct reduction to OH in the region of mixed control. The high activity of Au (311) was ascribed to a high step density and AuOH present on its surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号