首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC × LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC × LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate–8% sodium chloride aqueous solution and butanol–1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC × LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC × LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa.  相似文献   

2.
Semipreparative high-speed counter-current chromatography (HSCCC) by time-controlled collection method was successfully applied for isolation and purification of α-terthienyl, 5-(3-buten-1-ynyl)-2,2'-bithienyl, and 5-(3-penten-1-ynyl)-2,2'-bithienyl from Flaveria bidentis (L.) Kuntze for the first time. The two-phase solvent system composed of n-hexane and acetonitrile at the volume ratio of 1:1 (v/v) was used for the semipreparative HSCCC. The 5.2 mg α-terthienyl, 2.2 mg 5-(3-buten-1-ynyl)-2,2'-bithienyl, and 4.3 mg 5-(3-penten-1-ynyl)-2,2'-bithienyl with the purity of 99.9, 90.2, and 92.1% were produced from 265.6 mg crude extract, respectively, and 5-(3-penten-1-ynyl)-2,2'-bithienyl was first isolated from Flaveria bidentis (L.) Kuntze. The structures of the separated compounds were identified by electrospray-ionization mass spectrometry and proton and carbon nuclear magnetic resonance ((1)H- and (13)C-NMR).  相似文献   

3.
Flaveria bidentis (L.) Kuntze is an annual alien weed of Flaveria Juss. (Asteraceae) in China. Bioactive compounds, mainly flavonol glycosides and flavones from F. bidentis (L.) Kuntze, have been studied in order to utilize this invasive weed, Analytical high-performance counter-current chromatography (HPCCC) was successfully used to separate patuletin-3-O-glucoside, a mixture of hyperoside (quercetin-3-O-galactoside) and 6-methoxykaempferol-3-O-galactoside, astragalin, quercetin, kaempferol and isorhamnetin using two runs with different solvent system. Ethyl acetate-methanol-water (10:1:10, v/v) was selected by analytical HPCCC as the optimum phase system for the separation of patuletin-3-O-glucoside, a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside, and astragalin. A Dichloromethane-methanol-water (5:3:2, v/v) was used for the separation of quercetin, kaempferol and isorhamnetin. The separation was then scaled up: the crude extract (ca 1.5 g) was separated by preparative HPCCC, yielding 12 mg of patuletin-3-O-glucoside at a purity of 98.3%, yielding 9 mg of a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside constituting over 98% of the fraction, and 16 mg of astragalin (kaempferol-3-O-glucoside) at a purity of over 99%. The pump-out peaks are isorhanetin (98% purity), kaemferol (93% purity) and quercitin (99% purity). The chemical structure of patuletin-3-O-glucoside and astragalin were confirmed by MS and 1H, 13C NMR.  相似文献   

4.
Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH‐zone‐refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH‐zone‐refining CCC, a slightly polar two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/n‐butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH‐zone‐refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos.  相似文献   

5.
In this paper, macroporous resin column chromatography and counter‐current chromatography (CCC) were applied for large‐scale preparative separation of three flavonoids from the flower of Daphne genkwa, a famous Chinese medicinal herb. Nine kinds of resins were investigated by adsorption and desorption tests and D101 macroporous resin was selected for the first cleaning‐up, in which 40% aqueous ethanol was used to remove the undesired constituents and 90% aqueous ethanol was used to elute the targets. The crude extract after the first step was directly subjected to the preparative CCC purification using the solvent system composed of n‐hexane–ethyl acetate–methanol–water (4:5:4:5, v/v). The compounds apigemin (823 mg), 3‐hydroxyl‐genkwanin (842 mg) and genkwanin (998 mg) with the purities of 98.79, 97.71 and 93.53%, respectively, determined by HPLC were produced from 3‐g crude extract only in one CCC run. Their chemical structures were identified by MS, UV and the standards.  相似文献   

6.
The optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline from Corydalis yanhusuo W. T. Wang was investigated using orthogonal experimental design. pH‐zone‐refining counter‐current chromatography (CCC) with normal phase elution was successfully applied to preparative separation of alkaloids from the crude extract of Corydalis yanhusuo. The separation was performed with a biphasic solvent system composed of chloroform (CHCl3)–methanol (MeOH)–water (2:1:1, v/v), in which the lower organic phase containing 10 mM of triethylamine was used as the mobile phase, while the upper aqueous phase containing 10 mM of hydrochloric acid was used as the stationary phase. The separation mechanism of quaternary ammonium alkaloids using pH‐zone‐refining CCC was discussed in comparison with standard high‐speed CCC. In the present study, the separation of 1.200 g of crude sample yielded 129 mg of dehydrocorydaline and 12 mg of palmatine at a high purity of 94 and 92%, respectively. Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.  相似文献   

7.
In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high‐speed counter‐current chromatography were applied to separate and purify the caryophyllene oxide, 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two‐phase solvent system containing n‐hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high‐speed counter‐current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC‐MS, 1H‐NMR, and 13C‐NMR.  相似文献   

8.
Two‐phase solvent system plays crucial role in successful separation of organic compounds using counter‐current chromatography (CCC). An interesting two‐phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract).  相似文献   

9.
D4020 resin offered the best dynamic adsorption and desorption capacity for total flavonoids based on the research results from ten kinds of macroporous resin. A column packed with D4020 resin was used to optimize the separation of total flavonoids from Flaveria bidentis (L.) Kuntze extracts. The content of flavonoids in the product was increased from 4.3 to 30.1% with a recovery yield of 90%. After the treatment with gradient elution on D4020 resin, the contents of isorhamnetin 3‐sulfate and astragalin were increased from 0.49 to 8.70% with a recovery yield of 74.1% and 1.16 to 30.8%, with a recovery yield of 92.2%, respectively. Further purification was carried out by one‐run high‐speed countercurrent chromatography yielding 4.5 mg of isorhamnetin 3‐sulfate at a high purity of 96.48% and yielding 24.4 mg of astragalin at a high purity of over 98.46%.  相似文献   

10.
Liang J  Yang Z  Cao X  Wu B  Wu S 《Journal of chromatography. A》2011,1218(36):6191-6199
In this work, we have established a new stop-and-go two-dimensional chromatography coupling of counter-current chromatography and liquid chromatography (2D CCC × LC) for the preparative separation of two novel antioxidant flavonoids from the extract of alfalfa (Medicago sativa L.). The CCC column has been used as the first dimension to purify the target flavonoids using a solvent system of isopropanol and 20% sodium chloride aqueous solution (1:1, v/v) with the stop-and-go flow technique, and the LC column packed with macroporous resin has been employed as the second dimension for on-line absorption, desalination and desorption of the targeting effluents purified from the first CCC dimension. As a result, two novel flavonoids, 6,8-dihydroxy-flavone-7-O-β-D-glucuronide (15.3 mg) and 6-methoxy-8-hydroxy-flavone-7-O-β-D-glucuronide (13.7 mg), have been isolated from 126.8 mg of crude sample pre-enriched by macroporous resin column. Their structures have been identified by electrospray ionization mass spectrometry (ESI-MS), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) and one- and two-dimensional nuclear magnetic resonance spectra (1D and 2D NMR). Further antioxidant assays showed that the first component possess a strong antioxidant activity. All the results demonstrated that the stop-and-go 2D CCC × LC method is very efficient for the separation of flavonoids of alfalfa and it can also be applied to isolate other comprehensive multi-component natural products.  相似文献   

11.
Wei Y  Hu J  Li H  Liu J 《Journal of separation science》2011,34(23):3426-3432
Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR.  相似文献   

12.
步知思  何青  赵如诗  楚楚  李行诺  童胜强 《色谱》2017,35(9):1014-1021
该文建立了大孔树脂-高速逆流色谱分离中药材地黄中有效成分毛蕊花糖苷的方法。考察了4种大孔树脂对地黄粗提物中毛蕊花糖苷的静态吸附与解吸情况,其中D101大孔树脂对目标成分的吸附率与解吸率最理想,实验结果表明体积分数为10%的乙醇洗脱得到的毛蕊花糖苷含量最高,目标成分含量从4.9%提高到32.6%。最后,部分纯化的样品(165 mg)采用高速逆流色谱进一步纯化,两相溶剂系统由乙酸乙酯-正丁醇-水(1:4:5,v/v/v)组成,分离得到45 mg纯度为96%的毛蕊花糖苷。  相似文献   

13.
The traditional methods used in natural product separation primarily target the major components and the minor components may thus be lost during the separation procedure. Consequently, it's necessary to develop efficient methods for the preparative separation and purification of relatively minor bioactive components. In this paper, a LC/MS method was applied to guide the separation of crude extract of lotus (Nelumbo nucifera Gaertn.) leaves whereby a minor component was identified in the LC/MS analysis. Afterwards, an optimized pH-zone-refining CCC method was performed to isolate this product, identified as N-demethylarmepavine. The separation procedure was carried out with a biphasic solvent system composed of hexane-ethyl acetate-methyl alcohol-water (1:6:1:6, v/v) with triethylamine (10 mM) added to the upper organic phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase eluent. Two structurally similar compounds--nuciferine and roemerine--were also obtained from the crude lotus leaves extract. In total 500 mg of crude extract furnished 7.4 mg of N-demethylarmepavine, 45.3 mg of nuciferine and 26.6 mg of roemerine with purities of 90%, 92% and 96%, respectively. Their structures were further identified by HPLC/ESI-MSn, FTICR/MS and the comparison with reference compounds.  相似文献   

14.
A preparative counter-current chromatography (CCC) method for isolation and purification of oridonin, a new cancer chemoprevention agent, from the Chinese medicinal plant Rabdosia rubescens was successfully established. The crude oridonin was obtained by elution with a light petroleum/acetone solvent mixture from ethanol extracts of R. rubescens using column chromatography on silica gel. With a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (1:2:1:2, v/v), 120 mg of oridonin at the purity of 97.8% was obtained from 200 mg of the crude sample in a single-step CCC separation. The structure of oridonin was identified by ESI-MS, 1H NMR, and 13C NMR.  相似文献   

15.
A two-dimensional counter-current chromatographic system (2D-CCC) for preparative isolation and purification of three prenylflavonoids from Artocarpus altilis is presented. An upright CCC instrument (CCC1, total capacity: 1600 ml) was used as the first dimension. Effluent of interest from CCC1 was collected on-line into a 30 ml sample loop by a laboratory-prepared column-switching interface and introduced into a high-speed CCC instrument (CCC2, total capacity: 210 ml) for the second dimension separation. With this 2D-CCC system and a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (5:5:7:3 and 5:5:6.5:3.5, v/v/v/v), which had been selected by high-speed CCC, about a 500 mg amount of the crude extract was separated, yielding 9 mg of compound 1, 28 mg of compound 2 and 78 mg of compound 3. The purities of the three prenylflavonoids were 98.7 (1), 98.3 (2) and 97.2% (3), respectively, as determined by HPLC analysis. Their chemical structures were identified by electrospray ionization MS, (1)H NMR and (13)C NMR.  相似文献   

16.
In this paper, an effective method combing fast elution‐extrusion counter‐current chromatography (CCC) and LC/MS for rapid screening of antioxidative phenolic compounds in Chinese Rhubarb is presented. An integrated three‐coil CCC column (40 mL each coil) was used to accomplish the optimization of biphasic liquid system. In a single run (approximately 40 min), the solvent system composed of n‐hexane/ethyl acetate/methanol/water (1:1:1:1, v/v) was selected as optimum CCC liquid system for fast fractionation of the crude ethanol extract. With a 140 mL‐capacity CCC instrument, 100 mg Chinese Rhubarb extract was separated under the optimized conditions, producing six fractions in only 100 min. The quantities of each fraction were ~15 mg. In addition, each fraction was subjected to antioxidant activity assay and characterized by LC/MS analysis. Fifty compounds, including phenolic acids, phenolic glucosides and hydroxyanthraquinones, were detected by LC/MS/MS analysis. As a result, gallic acid together with Fr I showed excellent antioxidant activity, which was well consistent with previous studies and exhibited great potential for natural drug discovery program of the present method.  相似文献   

17.
High-performance counter-current chromatography has been used for the separation of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid from crude extract of cranberry. The separation was performed with a two-phase solvent system composed of butanol/0.05% aqueous trifluoroacetic acid/methanol at a volume ratio of 4:5:1. The two-phase solvent system was selected following the determination of partition coefficients (K) in a range of solvent systems using a robotic solvent system selection method. Analytical scale CCC confirmed that this phase system separated the components from a crude cranberry extract (40 mg scale) with acceptable purities. Preparative CCC of 400 mg of crude yielded 4.2 mg of p-coumaric acid at a purity of over 98%, 3.6 mg of delphinidin-3-O-sambubioside at a purity of over 97% and 4.5 mg of cyanidin-3-O-sambubioside at a purity of 73%, which was further purified by preparative high-performance liquid chromatography to yield 3 mg cyanidin-3-O-sambubioside at 95% purity. The identification of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid was performed by ESI-MS, 1H-NMR and 13C-NMR spectra.  相似文献   

18.
In this article, a simple and efficient protocol for rapid preparation and separation of neohesperidin from the albedo of Citrus reticulata cv. Suavissima was established by the combination of macroporous resin column chromatography and high-speed counter-current chromatography (HSCCC). Six types of resin were investigated by adsorption and desorption tests, and D101 macroporous resin was selected for the first cleaning-up procedure, in which 55% aqueous ethanol was used to elute neohesperidin. After treatment with D101 resin, the neohesperidin purity increased 11.83-fold from 4.92% in the crude extract to 58.22% in the resin-refined sample, with a recovery of 68.97%. The resin-refined sample was directly subjected to HSCCC purification with a two-phase solvent system composed of ethyl acetate-n-butanol-water (4:1:5, v/v), and 23.6 mg neohesperidin with 97.47% purity was obtained from 60 mg sample in only one run. The recovery of neohesperidin in HSCCC separation procedure was 65.85%. The chemical structure of the purified neohesperidin was identified by both HPLC and LC-MS. The established purification process will be helpful for further characterization and utilization of Citrus neohesperidin.  相似文献   

19.
An effective column‐switching counter‐current chromatography (CCC) protocol combining stepwise elution mode was successfully developed for simultaneous and preparative separation of anti‐oxidative components from ethyl acetate extract of traditional Chinese herbal medicine Rubia cordifolia. The column‐switching CCC system was interfaced by a commercial low‐pressure six‐port switching valve equipped with a sample loop, allowing large volume introduction from the first dimension (1st‐D) to the second dimension (2nd‐D). Moreover, to extend the polarity window, three biphasic liquid systems composed of n‐hexane/ethyl acetate/methanol/water (1:2:1:2, 2:3:2:3, 5:6:5:6 v/v) were employed using stepwise elution mode in the 1st‐D. By valve switching technique the whole interested region of 1st‐D could be introduced to second dimension for further separation with the solvent system 5:5:4:6 v/v. Using the present column‐switching CCC protocol, 500 mg of crude R. cordifolia extract were separated, producing milligram‐amounts of four anti‐oxidative components over 90% pure. Structures of purified compounds were identified by 1H and 13C NMR.  相似文献   

20.
Peng A  Li R  Hu J  Chen L  Zhao X  Luo H  Ye H  Yuan Y  Wei Y 《Journal of chromatography. A》2008,1200(2):129-135
In this paper, high-speed counter-current chromatography (HSCCC) instruments with different gravitational forces were applied for the separation of bioactive compounds from Triperygium wilfordii Hook.f. The critical parameters including sample concentration, sample volume and flow rate were first optimized on an analytical Mini-DE HSCCC system, and then scaled up to a preparative TBE 300A HSCCC system. Although this scale-up process was performed using different CCC instruments with different centrifuges and gravitational forces, the same resolutions were obtained and the elution time could be predictable. Five diterpenoid compounds and one unknown compound were separated from Triperygium wilfordii Hook.f. by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (HEMW) (3:2:3:2, v/v/v/v). This one-step flow gradient separation produced triptonide (25 mg), isoneotriptophenolide (77 mg), hypolide (83 mg), unknown compound (1 mg), triptophenolide (42 mg), triptonoterpene methyl ether VI (37 mg) from 320 mg crude extract with purities of 98.2%, 96.6%, 98.1%, 95.3%, 95.1%, and 96.5%, respectively. Their purities and structures were identified by high-performance liquid chromatography, mass spectrometry and NMR. This paper demonstrates that analytical CCC plays an important role in optimizing parameters and scale-up process when analytical CCC and preparative CCC are supplied by different manufacturers with different gravitational forces, and the scale-up process from analytical CCC to preparative CCC is still predictable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号