首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ordering of dodecyl-chain self-assembled monolayers (SAM) on different nanoscopic surfaces was investigated by FT-IR studies. As model systems plane-crystal-shaped ZrO(2) nanoparticles and spherical SiO(2) nanoparticles were examined. The type of capping agent was chosen dependent on the substrate, therefore dodecylphosphonic acid and octadecylphosphonic acid were used for ZrO(2) and dodecyltrimethoxysilane for SiO(2) samples. The plane ZrO(2) nanocrystals yielded more ordered alkyl-chain structures whereas spherical SiO(2) nanoparticles showed significantly lower alkyl-chain ordering. Submicron-sized silica spheres revealed a significantly higher alkyl chain ordering, comparable to an analogously prepared SAM on a non-curved plane oxidized Si-wafer. In the case of ZrO(2) nanocrystals an intense alkyl-chain alignment could be disturbed by decreasing the grafting density from the maximum of 2.1 molecules/nm(2) through the variation of coupling agent concentration to lower values. Furthermore, the co-adsorption of a different coupling agent, such as phenylphosphonic acid for ZrO(2) and phenyltrimethoxysilane for SiO(2), resulted in a significantly lower alkyl-chain ordering for ZrO(2) plane crystals and for large SiO(2) spherical particles at high grafting density. An increasing amount of order-disturbing molecules leads to a gradual decrease in alkyl-chain alignment on the surface of the inorganic nanoparticles. In the case of the ZrO(2) nanoparticle system it is shown via dynamic light scattering (DLS) that the mixed monolayer formation on the particle surface impacts the dispersion quality in organic solvents such as n-hexane.  相似文献   

2.
Vibrational sum frequency generation spectroscopy is used to study the interactions of the charged soluble organic surfactant sodium dodecyl sulfate (SDS) with an insoluble 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-aqueous interface. Results indicate that the surfactant species compete for surface sites in the mixed system, with a lower monolayer number density of DPPC molecules being observed in the presence of dodecyl sulfate anions at the interface. Spectroscopic results also indicate that fewer dodecyl sulfate chains reside at the interface when the insoluble DPPC film is present. Increased conformational ordering of the acyl chains of both the DPPC molecules and the interfacial dodecyl sulfate anions is observed in the mixed system. Additionally, charged surfactant SDS promotes the alignment of the interfacial water molecules even in the presence of a DPPC monolayer.  相似文献   

3.
Langmuir and Langmuir-Blodgett monolayers of N-(4-octadecyloxy-2-hydroxybenzylidene) derivatives of glycine, tyrosine, and phenylalanine were studied using pi-A isotherms and photoelastic modulated FTIR (PEM-FTIR). Based on compression modulus and interaction parameters, mixed monolayers of these compounds with stearylamine (SAM) showed well-organized monolayers compared to mixed systems with stearic acid (SA) and stearyl alcohol (SAL). The pure amphiphiles exhibited fairly well-ordered packing in the films, and in the mixtures, the ordering increased and showed a triclinic packing arrangement. For the phenylalanine amphiphile the packing showed slight disorder compared to the other two compounds. Surface properties of the LB films of these compounds on solid substrates were analyzed using static and dynamic contact angles of a series of liquids. The surface tension of coated substrates reflected clearly the highly acidic character. Fluidlike monolayers having a molecularly rough surface indicated high wettability for n-alkanes. In contrast, the monolayer containing well-ordered, well-packed alkyl chains indicated low wettability and small hysteresis.  相似文献   

4.
This work describes a novel class of layered organo-mineral materials manufactured via a single-step solution-phase reaction of n-alkylphosphonic acids (CnH(2n+1)P(O)(OH)2) with calcium hydroxyapatite mineral (CaHAP). TEM, SAXS, WAXS, FTIR, and Vapor Phase Adsorption data suggest that these alkyl-CaHAP materials present a surface-modified CaHAP matrix coated with ordered layers of calcium alkylphosphonates that are strongly adhered to the surface. Interlayer spacing increases from 1.47 (C3-CaHAP) to 4.77 nm (C18-CaHAP). According to FTIR, ordering of alkyl chains improves with the alkyl chain length. The organic loads in these alkyl-CaHAP can be controlled over a wide range (up to approximately 60%) by varying alkyl chain and the concentration of alkylphosphonic acids in the solution.  相似文献   

5.
This work reports on the first comprehensive characterization of octadecyl (C(18)) modified MCM-41 silica spheres, prepared via the pseudomorphic route, followed by grafting with mono- or trifunctional octadecyl (C(18)) alkyl chains and endcapping with hexamethyldisilazane. Small angle X-ray scattering (SAXS), nitrogen adsorption-desorption and scanning electron microscopy (SEM) measurements were performed to obtain information about the MCM-41 pore structure, surface properties and morphological features. The degree of grafting and cross-linking of the silanes were determined by (29)Si magic angle spinning NMR spectroscopy, while FTIR and (13)C NMR were employed to study the conformational behavior of the surface-immobilized alkyl chains. The SAXS pattern proved the existence of a hexagonal mesopore arrangement for both the ungrafted and the grafted MCM-41 silica spheres. In addition, there is evidence of some long-range distortion in the pore structure. SEM measurements revealed the same morphological features for the parent silica and the MCM-41 silica spheres before and after C(18) grafting. The achieved surface loading for the MCM-41 material is rather low. It was also shown that a substantial amount of the accessible surface silanol groups is endcapped by trimethylsilane which in turn results in a very low surface coverage due to the octadecyl chains. The nitrogen sorption studies provided values for the surface area, total pore volume and pore diameter which are very typical for mesoporous materials. The reduction in surface area and total pore volume upon surface grafting is related to the binding of trimethylsilane in the interior of the pores, while due to the spatial restrictions octadecyl chains are primarily attached near the pore entrance. The experimental FTIR and (13)C NMR data point to a very low conformational order of the C(18) chains which is in accordance with the observed low surface coverage and the resulting spatial freedom for these surface-immobilized alkyl chains.  相似文献   

6.
Molecular recognition of mixed nucleolipids of 1-(2-octadecyloxycarbonylethyl)cytosine and 7-(2-octadecyloxycarbonylethyl)guanine in the monolayers at the air-water interface and Langmuir-Blodgett (LB) films has been investigated in detail using surface pressure/potential-area isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Fourier transform infrared (FTIR) transmission spectroscopy, respectively. Prior to molecular recognition, the cytosine moieties in the monolayer were hydrogen bonded with an almost flat-on orientation, the alkyl chains were uniaxially oriented with respect to the film normal, the guanine moieties in the monolayer were stacked probably through pi-pi interaction with an end-on orientation, and the C-C-C planes of the alkyl chains were preferentially oriented parallel to the water surface. In the monolayer of equimolar mixture, molecular recognition between the cytosine and guanine moieties occurred together with the ring planes of base pairing and the C-C-C planes of the alkyl chains favorably oriented parallel to the water surface. The guanine moieties underwent an orientation change from an end-on mode before molecular recognition to a flat-on one after molecular recognition. The base pairing between the cytosine and guanine moieties in the monolayers was achieved since the N7-substituted guanine derivatives suppressed the formation of guanine tetramers. Both the IRRAS spectra of the monolayers and the FTIR spectra of the LB films presented the exact sites in the cytosine and guanine moieties for the formation of triple hydrogen bonds. The base pairing resulted in a change in molecular orientation and interaction, and the corresponding LB film exhibited a different phase transition behavior from a typical crystal transition for the cytosine-functionalized nucleolipids and an analogous glass transition for the guanine-functionalized nucleolipids. The thermal stability of the mixed LB film was improved in comparison to the LB films of pure components.  相似文献   

7.
The structure formation of wedge-shaped monodendrons based on symmetric benzenesulfonic acid with different lengths of peripheral alkyl chains was studied in Langmuir monolayers and Langmuir–Blodgett (LB) films. A phase transition from the liquid-expanded state to the liquid-condensed state was observed on compression of the Langmuir monolayers of the dendrons containing dodecyl lateral chains. The transition is accompanied by the formation of star-shaped aggregates visualized by Brewster angle microscopy. The three-layer LB transfer results in the reorganization of the monolayer into regions of bi-, tetra-, and hexalayers on a solid substrate with a low coverage of the surface. Homogeneous liquid-condensed mono layers are formed for the dendrons with hexa- and octadecyl chains, and the film thickness achieved by the LB transfer corresponds to the monolayer alignment of the molecules with the surface coverage up to 90%. It was determined that varying the alkyl length of wedge-shaped dendrones based on symmetric benzenesulfonic acid leads to a change in phase behavior of Langmuir monolayers as well as Langmuir–Blodgett films formed by them.  相似文献   

8.
In the study described here, the surface structure of a self-assembly octyl hydroxamic acid at a calcium fluoride (CaF(2)) surface is evaluated using sum-frequency vibrational spectroscopy (SFVS). Of particular significance are the results that show octyl hydroxamic acid adsorbs at the fluorite surface from octanol solution and has more ordering and molecular conformation than the octyl hydroxamic acid adsorbed from solution. At the fluorite/0.1 M octyl hydroxamic acid octanol solution interface a bilayer-like structure consisting of an octyl hydroxamic acid layer in contact with fluorite and a tilted alcohol layer was observed by SFVS. The alcohol molecules are oriented with respect to the hydroxamic acid monolayer with the OH groups directed towards the bulk alcohol phase and the terminal CH(3) group oriented to face the alkyl chains of the hydroxamic acid monolayer.  相似文献   

9.
Four generations of monodendrons with multiple dodecyl alkyl tails (AA-N, N representing number of alkyl tails from 1 to 8), an azobenzene spacer group, and a carboxylic acid polar head have been studied at the air-water and air-solid interface using AFM, GIXD, X-ray reflectivity, and UV-vis spectrometry. The one and two tail molecules formed orthorhombic lateral packing with long-range intramonolayer ordering. Good agreement between molecular models and thickness measurements indicated that the one and two tail molecules orient along the surface normal. The increase in the cross-sectional mismatch caused by the presence of the multiple chains for the higher generations disrupted the long-range ordering and forced the alkyl tails to adopt quasi-hexagonal structure. The higher generations (AA-4 and AA-8) formed a kinked structure with the alkyl tails oriented perpendicular to the surface with the azobenzene group tilted at a large degree toward the surface. The photoisomerization behavior in dilute solutions, at the air-water interface, and for grafted layers demonstrated that lower generation monodendrons maintained the photochromic behavior after chemical grafting to the silicon substrates, although the confinement of the molecules in monolayers significantly increased the reorganization time.  相似文献   

10.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

11.
The molecular arrangements of three different alkyl-substituted oligothiophenes both in two-dimensional adsorbed layers at a substrate interface and in bulk three-dimensional crystals were studied. Scanning tunneling microscopy (STM) was used to investigate the ordering of the conjugated oligomers in two-dimensional layers adsorbed on graphite. These data were compared with the X-ray structure determinations of single crystals revealing the arrangement in the three-dimensional bulk material. Quaterthiophenes 1 and 2, bearing dodecyl and hexyl side chains, respectively, exhibit a lamella-type stacking of the conjugated backbone concomitant with an interlocking of the alkyl side chains both on the surface and in the crystal. In contrast, the arrangement of propyl-substituted quaterthiophene 3 is rather "herringbone-like" due to the reduced interactions of the shorter alkyl side chains. In all three cases, evidently, the two-dimensional ordering at the graphite surface is coincident with the molecular packing in one cross-section of the three-dimensional crystal.  相似文献   

12.
The structure, reactivity, and acid-base properties of mixed monolayers prepared by photochemical reaction of hydrogen-terminated silicon with mixtures of ethyl undecylenate and n-alkenes were studied by ATR-FTIR spectroscopy and contact-angle measurements. The surface composition of the mixed monolayers and its correlation with the hydrolysis reactivity of terminal ethoxycarbonyl (ester) groups were investigated by systematically varying the mole fraction of ethyl undecylenate and the chain length of the unsubstituted alkenes in the binary deposition solution. It has been shown that the mole fraction of ester groups on the surface deviates only slightly from the mole fraction of ethyl undecylenate in the solution. The efficiency of ester hydrolysis under acidic conditions is significantly influenced by the monolayer structure, i.e., the surface density of ester groups and length of the unsubstituted alkyl chains. In addition, we find that mixed omega-alkanoic acid/alkyl monolayers on silicon (prepared via hydrolysis) exhibit well-defined contact angle titration curves from which the surface acid dissociation constants were determined. The results were compared with the acid-base properties reported in the literature for carboxylic acid-terminated alkylsiloxane monolayers on hydroxylated silicon and for omega-mercaptoalkanoic acid/alkanethiolate monolayers on gold. The weak pKa dependence (deltapKa approximately 1) on the surface density of carboxylic acid groups and on the length of unsubstituted alkyl chains is attributed to variations of the microenvironment of the acid moieties. These experimental findings provide fundamental knowledge at the molecular level for the preparation of bioreactive surfaces of controlled reactivity on crystalline semiconductor substrates.  相似文献   

13.
We performed density functional theory calculations of the atomic and electronic structure of a dense monolayer of phenyl-terminated alkyl chains chemisorbed onto the (100) Si surface. Different adsorption sites were characterized for both the pristine and (2 x 1) reconstructed surface. A strong effect on the ordering and alignment of the molecular energy levels with respect to the Fermi level of silicon is observed, consequent to intermolecular screening in the monolayer and of the appearance of surface localized states, as a function of the different bonding arrangements. Some possible consequences of these findings are discussed in the framework of the experimental synthesis of such monolayers as molecular current rectifiers in silicon-integrated nanoscale electronics.  相似文献   

14.
With the aim of elucidating the surface-induced molecular ordering in regioregular poly(3-hexylthiophene) (P3HT) monolayer films, we have controlled the intermolecular interactions at the interface between P3HT and the insulator substrate by using self-assembled monolayers (SAMs) functionalized with two kinds of groups (-NH2 and -CH3). We have found that, depending on the surface properties of such modified insulator substrates, the P3HT chains in the monolayer films can adopt two different conformations (edge-on and face-on). This surprising variation in chain conformation arises because of the specific interactions of the P3HT chains with the modified insulator substrates, which can be explained in terms of the following factors: the unshared electron pairs of the SAM end groups (in the -NH2 system), the pi-H interactions between the thienyl backbone bearing pi systems and the H (hydrogen) atoms of the SAM end groups, and interdigitation between the alkyl chains of P3HT and the alkyl chains of the SAMs (in the -NH2 system).  相似文献   

15.
The studies on the condensing and ordering effect of cholesterol by application of the Langmuir monolayer technique are usually performed on binary lipid/cholesterol systems. The results concerning a quantitative analysis of these effects in multicomponent monolayers are very limited. In this work the condensing and ordering effect of cholesterol in ternary (SM/DSPC/Chol and SM/DOPC/Chol) and quaternary (SM/DSPC/DOPC/Chol) films was investigated. It was evidenced that the systems containing saturated PC (both SM/DSPC and SM/DSPC/Chol) are always more condensed and chain-ordered than the systems containing unsaturated PC (SM/DOPC and SM/DSPC/DOPC and their mixtures with cholesterol). However, the magnitude of condensation provoked by cholesterol at higher surface pressures is stronger on the monolayers containing unsaturated PC. The addition of cholesterol into SM/PC films induces the increase of chain-ordering however, the effectiveness of cholesterol as an ordering agent is determined by the presence/absence of unsaturated phospholipid. The magnitude of the effect of cholesterol on the investigated mixed monolayer was analyzed in the context of the influence of sterol on lipid chains (ordering, straightening and reorientation of chains) as well as the reorientation of polar heads.  相似文献   

16.
The interaction between chitosan and Langmuir and Langmuir-Blodgett (LB) films of dimyristoyl phosphatidic acid (DMPA) is investigated, with the films serving as simplified cell membrane models. At the air-water interface, chitosan modulates the structural properties of DMPA monolayers, causing expansion and decreasing the monolayer elasticity. As the surface pressure increased, some chitosan molecules remained at the interface, but others were expelled. Chitosan could be transferred onto solid supports alongside DMPA using the LB technique, as confirmed by infrared spectroscopy and quartz crystal microbalance measurements. The analysis of sum-frequency vibration spectroscopy data for the LB films combined with surface potential measurements for the monolayers pointed to chitosan inducing the ordering of the DMPA alkyl chains. Furthermore, the morphology of DMPA LB films, studied with atomic force microscopy, was affected significantly by the incorporation of chitosan, with the mixed chitosan-DMPA films displaying considerably higher thickness and roughness, in addition to chitosan aggregates. Because chitosan affected DMPA films even at pressures characteristic of cell membranes, we believe this study may help elucidate the role of chitosan in biological systems.  相似文献   

17.
Self-assembled ferrocene monolayers covalently bound to monocrystalline Si(111) surfaces have been prepared from the attachment of an amine-substituted ferrocene derivative to a pre-assembled acid-terminated alkyl monolayer using carbodiimide coupling. This derivatization strategy yielded nanometer-scale clean, densely packed monolayers, with the ferrocene units being more than 20 A from the semiconductor surface. The amount of immobilized electroactive units could be varied in the range 2 x 10(-11) to approximately 3.5 x 10(-10) mol cm(-2) by diluting the ferrocene-terminated chains by inert n-decyl chains. The highest coverage obtained for the single-component monolayer corresponded to 0.25-0.27 bound ferrocene per surface silicon atom. The electrochemical characteristics of the mixed n-decyl/ferrocene-terminated monolayers were found to not depend significantly on the surface coverage of ferrocene units. The reversible one-electron wave of the ferrocene/ferrocenium couple was observed at E degrees ' = 0.50 +/- 0.01 V vs SCE, and the rate constant of electron transfer kapp was about 50 s(-1).  相似文献   

18.
By means of contact angle measurements, it has been shown that compact alkyl-dimethyl-siloxy layers can be obtained on the surface of acid leached glass using the method previously developed for fume silica. Subsequently, a series of densest possible alkyl-dimethylsiloxy layers were prepared having non-branched alkyl substituents, CzH2z+1, (with z=1, 2, 3, 6, 10, 14, 18 and 22) and wetting angles were measured as a function of the temperature. On surfaces coated with longer alkyl substituents the formation of mixed crystals, consisting of the sparse chemically bonded alkyl layer and a n-alkane acting as a wetting agent, has been observed at low temperatures. At higher temperatures such surfaces appeared to be «molten», and at the same time swollen by the wetting agent. Equations have been derived to deduce the free surface energies and to account for the wetting properties of rough and swollen surfaces. Application of the results to the data presented in this paper revealed that glass surfaces covered with short alkyl chains (methyl, ethyl and propyl) are rough and those covered with long chains (tetradecyl, octadecyl and docosyl) are swollen. Surfaces formed by hexyl- and decyl-dimethylsiloxy substituents exhibit intermediate properties.  相似文献   

19.
Self-assembly and molecular recognition of the monolayers composed of an equimolar mixture of adenine- and thymine-functionalized nucleolipids at the air-water interface have been investigated in detail using surface pressure-molecular area isotherms and in situ infrared reflection absorption spectroscopy (IRRAS). Prior to molecular recognition, the adenine moieties in the monolayer were almost oriented on an end-on mode through π-stacking and hydrogen bonding interactions, and the C-C-C planes of the alkyl chains were preferentially oriented perpendicular to the water surface, while the thymine moieties in the monolayer were involved in hydrogen bonding almost with a flat-on orientation. On aqueous subphases containing complementary bases, no significant molecular recognition was observed for the monolayers of individual nucleolipids. In the monolayer of equimolar mixture, molecular recognition occurred between the adenine and thymine moieties through hydrogen bonding probably with the development of cyclic structures of adenine-thymine-adenine-thymine quartets. Although molecular recognition between the monolayer of thymine-functionalized nucleolipids and aqueous melamine took place through triple hydrogen bonds, no melamine binding to the monolayer of equimolar mixture was observed, which reflects the formation of the quartets in the mixed monolayers at the air-water interface. FTIR and small-angle X-ray diffraction (XRD) results of the corresponding Langmuir-Blodgett films support the hydrogen bonding recognition and molecular orientation.  相似文献   

20.
Mixed monolayers of deuterated palmitic acid C(15)D(31)COOH (dPA) and deuterated stearic acid C(17)D(35)COOH (dSA) with 1-bromoalkanes of different alkyl chain length (C(4) to C(16)) at the air-water interface were investigated. Alkanes and 1-chlorohexadecane ClC(16)H(33) (ClHex) were also studied to compare the effects of the halogen on the mixed monolayers. Surface pressure-area isotherms and Brewster angle microscopy (BAM) were used to obtain the organization and phase behavior, providing a macroscopic view of the mixed monolayers. A molecular-level understanding of the interfacial molecular organization and intermolecular interactions was obtained by using vibrational sum frequency generation (SFG) spectroscopy and infrared reflection-absorption spectroscopy (IRRAS). It was found that from the alkyl halide molecules investigated 1-bromopentadecane, BrC(15)H(31) (BrPent), 1-bromohexadecane, BrC(16)H(33) (BrHex), and ClHex incorporate into the fatty acid monolayers. Alkanes of 15- and 16-carbon chain length do not incorporate into the fatty acid monolayer, which suggests that the halogen is needed for incorporation. Isotherms and spectra suggest that BrHex molecules are squeezed out, or excluded, from the fatty acid monolayer as the surface pressure is increased, while BAM images confirm this. Additionally, SFG spectra reveal that the alkyl chains of both fatty acids (dPA and dSA) retain an all-trans conformation after the incorporation of alkyl halide molecules. BAM images show that at low surface pressures BrHex does not affect the two-dimensional morphology of the dPA and dSA domains and that BrHex is miscible with dPA and dSA. We also present for the first time BAM images of BrHex deposited on a water surface, which reveal the formation of aggregates while the surface pressure remains unchanged from that of neat water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号