首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiempirical CNDO, AM1, PM3 and ab initio HF/STO-3G, HF/3-21G(d), and HF/6-31(d) methods were employed in the geometry optimization of the phenothiazine and the corresponding radical cation. The results obtained from the PM3 performances were as good as those from the ab initio calculations in the structure optimization of both phenothiazine and phenothiazine radical cation. The PM3 method was used to optimize the structures of a series of N-substituted phenothiazine derivatives and their radical cations. The PM3-optimized results were then analyzed with the ab initio calculation at the 6-311G(d,p) level, which yielded the total energy, frontier molecular orbitals, dipole moments, and charge and spin density distributions of the phenothiazine derivatives and their radical cations.  相似文献   

2.
Vanadium oxide cluster cations V(x)O(y)(+) (x = 2-6) are prepared by laser ablation and are reacted with D(2)O in a fast flow reactor under room temperature conditions. A time-of-flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Observation of the products (V(2)O(5))(1-3)D(+) indicates the deuterium atom abstraction reaction (V(2)O(5))(1-3)(+) + D(2)O → (V(2)O(5))(1-3)D(+) + OD. In addition, significant association products (V(2)O(5))(1-3)D(2)O(+) are also observed in the experiments. Density functional theory calculations are performed to study the reaction mechanisms of V(4)O(10)(+) with H(2)O. The calculated results are in agreement with the experimental observations and indicate that H(2)O is dissociatively rather than molecularly adsorbed in V(4)O(10)H(2)O(+) complex.  相似文献   

3.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   

4.
The reaction of enantiomerically enriched 2-methyl-2-nitro-3-(diphenylphosphatoxy)alkyl radicals with tributyltin hydride and AIBN in benzene at reflux results in the formation of alkene radical cation/anion pairs, which are trapped intramolecularly by amine nucleophiles, leading to pyrrolidine and piperidine systems with memory of stereochemistry. The scope and limitations of the system are explored with respect to nucleophile, leaving group, and substituents within the substrate backbone.  相似文献   

5.
Dicyanoanthracene-sensitized photolysis of aryldiazomethanes affords stilbenes with cis/trans ratios of ~3 via free radical cations; anodic oxidation gives similar results but via radical cations adsorbed on electrode surface.  相似文献   

6.
Summary The hyperfine coupling constants of the radical cations of dimethylether, oxetane (oxacyclobutane), and tetrahydrofuran (oxacyclopentane) are studied byab-initio molecular orbital theories. The extraordinarily large hyperfine coupling constants of the protons of the ethers that have been found experimentally are analyzed to conclude that an important mechanism of the hole delocalization is the spin polarization in the H-C-O-C-H bond. It is also found that for the ethereal systems conventional molecular orbital calculations give glaringly small spin densities but the SAC-CI calculation gives remarkably improved values.  相似文献   

7.
Electronic transition energies of radical cations of 1.2-, 1.3-, 1.6-, and 1.7?dihydroxynaphthalenes are calculated using an open-shell SCF method with configuration interaction. The results are critically analyzed and a correlation diagram is given that shows the energy-shift and intensity variation in the electronic transitions when moving from one system to another, thus revealing the characteristic behavior of the transitions depending on the positions of the hydroxyl substituents. An interesting relation connecting the electronic spectroscopy with the UV photoelectron spectroscopy is suggested on the basis of which the first ionization potentials (IPS ) of the substituted aromatic systems can be inferred from the calculated energy of the A-type (HOMO → LUMO ) transitions for their radical cations. Furthermore, the predictability of the IP s is found to be considerably increased with the incorporation of “molecular size” in the regression.  相似文献   

8.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

9.
Laser and steady-state photolysis, sensitized by NMQ+, of PhSCH(R)X 1-4 (R = H, Ph; X =SiMe3, CO2H) was carried out in CH3CN. The formation of 1+*-4+* was clearly shown. All radical cations undergo a fast first-order fragmentation reaction involving C-Si bond cleavage with 1+* and 2+* and C-C bond cleavage with 3+* and 4+*. The desilylation reaction of 1+* and 2+* was nucleophilically assisted, and the decarboxylation rates of 3+* and 4+* increased in the presence of H2O. A deuterium kinetic isotope effect of 2.0 was observed when H2O was replaced by D2O. Pyridines too were found to accelerate the decarboxylation rate of 3+* and 4+*. The rate increase, however, was not a linear function of the base concentration, but a plateau was reached. A fast and reversible formation of a H-bonded complex between the radical cation and the base is suggested, which undergoes C-C bond cleavage. It is probable that the H-bond complex undergoes first a rate determining proton-coupled electron transfer forming a carboxyl radical that then loses CO2. The steady-state photolysis study showed that PhSCH3 was the exclusive product formed from 1 and 3 whereas [PhS(Ph)CH-]2 was the only product with 3 and 4.  相似文献   

10.
On the basis of the CASPT2 (multiconfigurational second-order perturbation theory) geometry optimization calculations, the ground states of the o-C(6)H(4)(+) (C(2v)), m-C(6)H(4)(+) (C(2v)), and p-C(6)H(4)(+) (D(2h)) radical cations were determined to be 1 (2)B(1), 1 (2)A(2), and 1 (2)B(1u), respectively. For o-C(6)H(4)(+) and m-C(6)H(4)(+), the first excited states (1 (2)A(2) and 1 (2)A(1), respectively) lie very close to the respective ground states. The small distance value of 1.419 A between the two dehydrocarbons in the ground-state geometry of m-C(6)H(4)(+) indicates that there is a real chemical bond between the two dehydrocarbons (the distance in the 1 (2)A(1) geometry of m-C(6)H(4)(+) is very long as in the m-C(6)H(4) molecule). The (U)B3LYP isotropic proton hfcc (hyperfine coupling constant) calculation results imply that the ground and first excited states of o-C(6)H(4)(+) will have similar ESR spectrum patterns while the ground and first excited states of m-C(6)H(4)(+) will have completely different ESR spectrum patterns.  相似文献   

11.
The gas phase sabinene + OH reaction is studied both experimentally and theoretically. Product yields from the reaction of sabinene with OH radicals have been measured in the absence of NOx in the UCC chamber (Cork, Ireland) and in the presence of NOx in the LISA chamber. Three primary carbonyl compounds were observed and quantified: acetone in [(24 +/- 6)%], formaldehyde in [(25 +/- 6)%] and sabinaketone in [(20 +/- 6)%]. The simultaneous quantification of these compounds is one of the major results of this work. The mechanism of product formation for this reaction has been studied using the quantum chemical DFT-B3LYP (6-31G(d,p) method. According to these calculations, the H-atom abstraction channel from sabinene by OH in the initial oxidation step may be taken into account to explain the acetone production. Sabinaketone and formaldehyde are mainly products of the addition channels of OH on the -C=CH2 double bond of sabinene. This is the first theoretical work on the title reaction.  相似文献   

12.
Highly resolved ESR spectra of monomer, dimer and trimer radical cations of coronene (C24H12) were observed at room temperature for a solution of 1,1,1,3,3,3-hexafluoro-2-propan-2-ol (HFP) containing thallium(III) trifluoroacetate as oxidant. The spectra consisting of multiple lines with isotropic 1H-hyperfine splitting (hfs) constants of 0.0766 mT (24H) and 0.013 mT (6H) were attributable to a mixture of the dimer with the trimer radical cations, (C24H12)2+ and (C24H12)3+. For (C24H12)2+, the 1H-hfs constant agreed well with the reported value, 0.077 mT. However, for (C24H12)3+, the values were significantly different from the reported ones, 0.117 mT (12H) and 0.020 mT (24H), by Ohya Nishiguchi et al. [H. Ohya-Nishiguchi, H. Ide, N. Hirota, Chem. Phys. Lett. 66 (1979) 581], but rather similar to those reported by Willigen et al. [H. van Willigen, E. De Boer, J.T. Cooper, W.F. Forbes, J. Chem . Phys. 49 (1968) 1190]. In conflict with Willigen's report, however, no ESR line broadening which has been ascribed to a low stationary concentration of (C24H12)3+ was detected. Based on ab initio MO calculations for benzene as a compact model of C24H12, the structure of (C24H12)3+ was investigated in terms of the observed 1H-hfs constants. A staggered sandwich C(2v) structure was suggested being at the "global" minimum for the benzene trimer cation. In the structure, the unpaired electron spin is predominantly localized to the central ring, which is qualitatively in agreement with the previous ESR results of (C24H12)3+ by Ohya-Nishiguchi et al. In addition, as a "local" minimum, the benzene trimer was indicated to have a slipped sandwich Cs structure, which is less stable by ca. 19 kJ mol(-1) than the "global" minimum. In this structure, the unpaired electron spin was nearly equally distributed on both the central and one of the two side C24H12 molecules. The observed 1H-hfs constants were possibly attributable to the (C24H12)3+ cation with the analogous slipped sandwich Cs structure.  相似文献   

13.
ions generated from a number of different presursors have been studied by high kinetie energy ion—molecule reations. It has been shown that at least four distinct stable species oeeur, of which acetonitrile and methyl isoeyanide retain their original structure. With imidazole or pyrazole as precursors, a mixture of open thain radical cations, not identical to the above species and probably interconvertible via the 1H-azirine radocal cation, is formed. From butrynitrile, pyrrole, crotonitrile, allyl interconvertible via the and cyanocyopropane a fourth species, probably the vinylidenimine ion, is formed.  相似文献   

14.
When R2NNR2 molecules lose an electron to give (R2NNR2) radical cations, the whole unit becomes planar, with a(π1)22)1 configuration. However, because R3P molecules are far more strongly pyramidal than R3N molecules, this flattening on electron loss is less, and phosphorous centred radical cations do not achieve planarity. This is clearly so for (R2PPR2)+ centres, whose liquid and solid state spectra analysed herein in terms of two equivalent 31P hyperfine couplings, show ca. 9% 3s character. This indicates considerable bending at each phosphorous centre. Furthermore, the form of the spectra, with no x — y splitting of the ‘perpendicular’ lines, suggests that each 31P coupling shares a common axis. This means that a trans conformation is required, as expected because this relieves steric strain and favours “π” type orbital overlap.  相似文献   

15.
The substituent effects on the ring-opening reaction of cyclobutene radical cations have been studied at the Becke3LYP/6-31G* level of theory. The effect on the reaction energies and activation energies of the concerted and stepwise pathways of electron-donating substituents such as methyl and methoxy as well as electron-withdrawing substituents such as nitrile and carboxaldehyde in the 3-position of the cyclobutene is discussed. The exothermicity of the reaction correlates well with the ability of the substituent to stabilize the 1,3-butadiene radical cation by electron donation or conjugation. The relative stability of the (E) and (Z) isomers of the resulting 1,3-butadiene radical cations depends largely on steric effects. Similarly, steric effects are responsible for the relative energies of the different diastereomeric transition structures. The cyclopropyl carbinyl intermediate of the stepwise pathway resembles the nonclassical carbocation and is stabilized by electron-donating substituents. In the case of electron-donating substituents, this species becomes a minimum on the potential energy hypersurface, whereas unstabilized or destabilized cyclopropyl carbinyl radical cations are not minima on the hypersurface. The stabilization of the cyclopropyl carbinyl radical cation by substituents correlates qualitatively with the Brown-Okamoto substituent parameter sigma+. However, in all cases studied here, the concerted mechanism is the lowest energy pathway.  相似文献   

16.
Ab initio molecular orbital and hybrid density functional theory methods are employed to characterize the structure, bonding and properties of several cyclic dithia radical cation systems, particularly in the context of intra molecular two-center three-electron (2c-3e) bonding between two sulfur atoms. The calculated results are able to interpret the time-resolved transient optical spectra obtained from pulse radiolysis technique for these positively charged dithia systems in aqueous solution. Visualization of the appropriate molecular orbital (MO) in the systems is able to depict the presence of a 2c-3e bond between two sulfur atoms and its sigma character. Geometry optimizations of these doublet systems are carried out at restricted open shell Becke's half-and-half (BHH) nonlocal exchange and Lee-Yang-Parr (LYP) nonlocal correlation functionals (BHHLYP) with 6-311+G(d,p) basis set including solvent effects adopting Onsager's reaction field model. Hessian calculations are done at the same level to check the nature of the equilibrium geometry. Energy data are further improved by performing MP2/6-311+G(d,p) calculations on these radical cation systems. Excited-state calculations are done following configuration interaction with single-electron excitation (CIS) method and the optical transition wavelength from the highest doubly occupied molecular orbital (HDOMO) to the lowest singly occupied molecular orbital (LSOMO) is seen to correspond and match to the position of the absorption maxima (lambda(max)) obtained from the experimental spectra for all these radical cation systems in aqueous solution. These calculations are able to resolve a long-standing ambiguity in the assignment of intra molecular 2c-3e bonding in the case of the 3-methyl-2,4-dithiapentane radical cation system and to provide new insights into bonding features of this odd electron system as well as of other cyclic dithia systems studied.  相似文献   

17.
The factors determining the relative reactivities and orientation ratios in free radical additions to unsymmetrically substituted alkenes have been analysed in terms of intermolecular population analysis. The reactivity of trifluoromethyl radical additions was found to be primarily determined by charge transfer contributions characterising the extent of bond formation in the transition state, whereas the addition of the methyl radical is influenced predominantly by steric effects.  相似文献   

18.
The behavior of the 3-alkylidene-1-pyrazoline radical cations generated by photoinduced electron transfer reactions was examined. The nitrogen-retained radical cations have been detected using laser flash photolysis. The photochemical products indicate that E/Z isomerization, intramolecular cyclization, and solvent addition (acetonitrile) occurred.  相似文献   

19.
The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(?+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(?+) (ii). Calculations support that 1a(?+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(?+) follows pathway i, leading to trans-stilbene radical cation (2b(?+)) and thiobenzophenone.  相似文献   

20.
A correlation between the stereoselectivity of cis-and trans-1, 2-dimethylcyclohexane in o-xylene hydrogenation and theoretical charge density of Pd centers as a function of particle size has been established.
— -1, 2- o- Pd .


On sabbatical leave from Instituto de Fisica UNAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号