首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The broadening and shift coefficients of more than 100 absorption lines of the ν2 + ν3 band of water vapor that are induced by the pressure of helium are measured and calculated. The broadening and shift coefficients are obtained from analysis of the room-temperature absorption spectra of an H2O-He mixture measured with a resolution of 0.007 cm?1 on a Fourier spectrometer in a large range of helium pressures. The specific features in the rotational dependence of the line center shifts are determined, which, in contrast to the broadening induced by other gases, are mainly positive. The calculated coefficients of the line broadening and shift of line centers are determined by a semiclassical method. An unusual dependence of the shift coefficients is explained by the rotational dependence of the intermolecular isotropic interaction potential.  相似文献   

3.
The OPERA experiment at the underground Gran Sasso Laboratory (LNGS) has to perform the first detection of neutrino oscillations in appearance mode through the direct observation of νμ → ντ. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN neutrino beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2008–2009 with the first candidate event νμ → gvτ recently detected.  相似文献   

4.
5.
The vibrational–rotational absorption spectrum of D2O in the range from 10 120 to 10 450 cm–1 is recorded on a Fourier transform spectrometer with a resolution of 0.05 cm–1. The measurements were performed using a multipass White cell with an optical path length of 24 m. A light-emitting diode with brightness higher than that of other devices was used as a radiation source. The signal-to-noise ratio was about 104. The spectrum is interpreted as consisting of lines of more than 400 transitions. The spectral characteristics of lines (centers, intensities, and half widths) are determined by fitting the Voigt profile parameters to experimental data by the least-squares method. The intensities of lines and the experimental rotational energy levels of the (301) vibrational state of the D2 16O molecule with high rotational quantum numbers are determined for the first time.  相似文献   

6.
Halfwidths and shifts of CH3D lines are calculated for the case of nitrogen broadening. The calculations are performed for room temperature (296 K) for vibrational–rotational lines in the ν3 parallel band, with the rotational quantum numbers varying in the ranges of 0 ≤ J ≤ 70 and 0 ≤ K ≤ 20. For each line, the temperature-dependence characteristics are calculated in the range of 200–400 K recommended for the HITRAN database. The calculations are carried out using a semiempirical method with a correction factor the parameters of which are adjusted on a number of experimental values.  相似文献   

7.
Infrared reflection-absorption spectra of thin films of α-crystalline hexafluoroethane deposited on a gold-plated copper mirror are measured at temperatures of 70 and 80 K. The bands corresponding to strong in the dipole absorption vibrations ν5 and ν10 have complex contours, the shape of which is explained in terms of the resonant dipole–dipole interaction between identical spectrally active molecules of the crystal. Splittings of the complex ν5 and ν10 bands are explained taking into account two effects: the Davydov splitting and the LO–TO splitting of the strong modes. Bands of the asymmetric 13С12СF6 isotopologue in the absorption spectrum of the crystal exhibit an anomalously large isotope shift as compared with the shift in the spectrum of free molecules. This anomaly is explained by intermolecular resonant dipole–dipole interaction of asymmetric 13С12СF6 isotopologue with molecules of the environment, consisting of the most abundant 12C2F6 isotopologue. The correctness of the given interpretation is confirmed calculating these three effects in the model of resonant dipole–dipole interaction.  相似文献   

8.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

9.
Crystals of [Rb0.7(NH4)0.3]2SO4 solid solutions are studied using x-ray diffractometry in the temperature range 4.2–300 K. No anomalies are revealed in the temperature dependences of the lattice parameters and the volume of the host unit cell. A series of superstructure reflections observed along the basis axes corresponds to the guest lattice formed in the matrix of the host structure. From analyzing the axial ratio of these structures and their temperature dependences, it is concluded that the structure of the crystal has the form of an incommensurate composite. The guest structure of the composite at room temperature can be considered a set of chains that are not correlated along the b direction. In the plane perpendicular to the chain axes, these chains form a regular framework that is also incommensurate to the host lattice.  相似文献   

10.
The formation of an intermediate phase in SrFe12O19/La0.9Ca0.1MnO3 composites was demonstrated for the first time using only Mössbauer spectroscopy. The SrFe12O19/La0.9Ca0.1MnO3 composite was prepared by the two-stage (sol–gel and hydrothermal) synthesis with varying initial conditions. The X-ray diffraction studies showed that the composite consisted of two phases: well-formed structures of manganite La0.9Ca0.1MnO3 and hexagonal ferrite SrFe12O19. It was found that nanocrystalline La0.9Ca0.1MnO3 particles with size d ? 150 nm formed in the composites at the surface of plate-like SrFe12O19 crystallites. The Mössbauer studies showed that the composite contained additional (intermediate) phase La0.9Ca0.1Mn(Fe)O3 that formed at the interface between SrFe12O19 and La0.9Ca0.1MnO3 phases. The intermediate phase concentration increased with the molar content of La0.9Ca0.1MnO3; in this case, the fraction of the surface of SrFe12O19 crystallites coated with La0.9Ca0.1MnO3 increased, which led to the increase in the total area of the interface surface and the intermediate phase concentration.  相似文献   

11.
The tracking capabilities of the OPERA detector allow to reconstruct τ-leptons and electrons. It gives a possibility to observe νμ → ντ oscillations in the appearance mode and to study νμ → νe oscillations in the νμ CNGS beam. Current results on νμ → νe channel in the three-flavour mixing model are presented. The same data allow to constrain the presence of additional sterile neutrino states. The analysis of the full 2008–2012 OPERA data set and work on its improvement are going on. Details of the achievements are presented.  相似文献   

12.
A crystal of the Cs5H3(SO4)4 · xH2O (x ≈ 0.5) (PCHS) compound, which belongs to the family of proton conductors with a complex system of hydrogen bonds, is investigated by 2H NMR spectroscopy. The temperature and orientation dependences of the 2H NMR spectra are measured and analyzed. It is established that, upon transition to the glassy phase at the temperature T g = 260 K, the parameters characterizing the proton exchange between positions in hydrogen bonds remain unchanged to within the limits of experimental error. The protons in the two-dimensional network of hydrogen bonds in the (001) plane are dynamically disordered over possible positions down to temperatures considerably lower than the glass transition point T g . However, water molecules are fixed at particular structural positions in the phase transition range. In PCHS crystals with a nonstoichiometric water content, this circumstance can be responsible for the frustration that leads to the formation of the glassy state.  相似文献   

13.
We performed measurements of the optical reflectivity in the energy range 0.007–30 eV on the clathrate-VIII type compound α-Eu8Ga16- xGe30 x in order to investigate its electronic band structure. The very low charge carrier concentration as well as ferromagnetic ordering of the divalent Eu ions below 10.5 K characterize the spectra at photon energies below ≃0.4 eV in accordance with the results of band structure calculations. Disorder induced bound states have been identified to affect the optical conductivity at energies between 10 and 100 meV.  相似文献   

14.
A new model is proposed for a local transition in a Jahn-Teller impurity center in a crystal with a ferroelastic (ferroelectric) phase transition. This model is based on direct interaction of the order parameter of the phase transition in the matrix with the Jahn-Teller impurity degrees of freedom. It is shown that, under these conditions, the order parameter field can induce lifting of degeneracy of the electronic states active in the Jahn-Teller effect, which is accompanied by a transition from the Jahn-Teller effect to the pseudo-Jahn-Teller effect with its subsequent suppression. As a result, a decrease in temperature gives rise to a structural local transition in the region of the low-symmetry ferroelastic (ferroelectric) matrix phase from the many-well local adiabatic to a single-well potential. The model proposed allows interpretation of experimental data obtained in an EPR study of the molecular impurity ion MnO 4 2? in the K3Na(CrO4)2 ferroelastic.  相似文献   

15.
The heat capacity of the [[N(C2H5)4]2CdBr4 crystal is measured by the calorimetric method in the temperature range from 80 to 300 K. It is revealed for the first time that the temperature dependence of the heat capacity C p (T) exhibits an anomaly associated with the first-order phase transition occurring at the temperature T 1 = 226.5 K. A long relaxation of the temperature of the crystal is observed in the temperature range 150–165 K.  相似文献   

16.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

17.
The refraction R of the diglycine nitrate (DGN) crystal, (NH2CH2COOH)2 · HNO3, in the para-and ferroelectric phases has been calculated in the model of noninteracting diatomic chemical bonds of the elementary unit cell of the crystal on the basis of the longitudinal and transversal polarizabilities of these bonds. The calculated magnitudes of the principal refractive indices n p , n m , and n g and the orientations of the optical indicatrix of the crystal agree satisfactorily with experimentally observed values. Introducing the coefficient of Lorenz-Lorentz interaction x into the corresponding formula permits better agreement of the calculated and experimental refractive indices of DGN crystal to be obtained. The temperature changes of these x coefficients upon the ferroelectric phase transition in the DGN crystal have been analyzed.  相似文献   

18.
The reflection R(?ω), transmission t(?ω), absorption α(?ω), and refraction n(?ω) spectra of polycrystalline In2O3–SrO samples with low optical transparency, which contain In2O3 and In2SrO4 crystallites with In4SrO6 + δ interlayers, are examined. In the region of small ?ω values, the reflection coefficient decreases as the resistance of samples saturated with oxygen increases. Spectral dependences n(?ω) and α(?ω) are calculated using the classical electrodynamics relations. The results are compared to the data based on the t(?ω) spectra. The calculated absorption spectra are interpreted within the model with an overlap of tails of the density of states in the valence band and in the conduction band. A “negative” gap E gn in the density of states with a width from–0.12 to–0.47 eV is formed in highly disordered samples in this model. It is demonstrated that the high density of defects and the band of deep acceptor states of strontium in the major matrix In2O3 phase are crucial to tailing of the absorption edge and its shift toward lower energies. The direct gap E gd = 1.3 eV corresponding to the In2SrO4 phase is determined. The energy band diagram and the contribution of tunneling, which reduces the threshold energy for interband optical transitions, are discussed.  相似文献   

19.
A model of the structure of the piezoelectric ceramic lead zirconate–titanate PbZr1–x Ti x O3 (PZT) is proposed. The model is based on ab initio calculations for possible local structures using the density functional theory (DFT) approach. A comparison of the calculated neutron diffraction data for local structures and the measured diffraction data obtained for actual powder samples shows there is a partially established long-range crystalline order in the material, in the sublattice of Zr and Ti cations.  相似文献   

20.
The EPR of Mn ions in the (La1?yPry)0.7Ca0.3MnO3 system has been studied within a broad range of temperatures (4<T<600 K) and Pr concentrations (0≤y≤1), as well as under isotope substitution of 18O for 16O. All compositions were shown to undergo transitions to a magnetically ordered state with decreasing temperature. Magnetic phase diagrams were constructed for systems with different oxygen isotopes. The diagrams include paramagnetic, ferromagnetic, and antiferromagnetic regions. In the paramagnetic region, at temperatures not too close to the phase transition points, the Mn ion linewidth ΔH pp (T) is related to the magnetic susceptibility χ(T) through the relation ΔH pp (T) = [χ0/χ(T)]ΔH pp (∞) + ΔH0, where ΔH pp (∞) is the width of the exchange-narrowed line in the high-temperature approximation, χ0 ∝ 1/T is the susceptibility of noninteracting ions, and ΔH0 is the residual width originating from the sample porosity and resonance-field scatter in unoriented grains of a powder sample. An analysis of the data on ΔH pp (∞), ΔH0, and χ(T) made it possible to estimate the symmetric and antisymmetric exchange interaction of Mn ions and of the noncubic crystal-field component of the oxygen ions. These parameters were found to be independent of the oxygen isotope species to within experimental error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号