首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The results of numerical simulations of the effects of a sudden stratospheric warming (SSW) in January 2009 are examined. The calculations are performed within the framework of the Global Self-Consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP), which calculates the parameters of the neutral and charged components of the upper atmosphere. An analysis of the numerical simulation results showed that the perturbation of mesospheric tidal and planetary waves significantly affects the structure of variations of the thermosphere at altitudes below 150 km. At higher altitudes, the characteristics of planetary and tidal waves in the thermosphere are practically insensitive to the corresponding mesospheric perturbations. The calculated space–time structure of ionospheric perturbations caused by mesospheric and planetary tidal waves is in qualitative agreement with observation data. The results show that the main reason for the observed ionospheric effects is the perturbation of the electric fields in the dynamo region. However, the calculated magnitudes of the ionospheric effects produced by the SSW are at least two- to threefold weaker than the observed. It is assumed that, in order to achieve a quantitative agreement between simulation and experimental results on the ionospheric effects of the SSW, it is not enough to consider only the dynamics of planetary and tidal waves in the mesosphere. An additional source of the perturbation of the thermosphere and ionosphere during the SSW may be associated with the propagation of internal gravity waves from the lower atmosphere and their dissipation in the thermosphere.  相似文献   

2.
numerical model of the vertical propagation and decay of nonlinear acoustic-gravity waves (AGW) from the Earth surface to the upper atmosphere is described. Monochromatic vertical velocity variations at the Earth surface are used as the AGW source in the model. The numerical method for solving three-dimensional hydrodynamic equations is based on finite-difference representation of the fundamental laws of conservation, which makes it possible to calculate not only smooth, but also physically correct generalized solutions of the hydrodynamic equations. The equations are solved in a range of altitudes from the ground up to 500 km. The background temperature, density, molecular viscosity and thermal conductivity coefficient are specified according to standard atmosphere models. The dependence of the characteristics of the waves on the amplitude of the wave source at the lower boundary is examined. The amplitudes of the AGW increase with the altitude, and the waves can break down due to nonlinear effects in the middle and upper atmosphere, depending on the amplitude of the source.  相似文献   

3.
Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations.  相似文献   

4.
The results of observations of acoustic-gravity waves in the troposphere and the ionosphere at middle latitudes during periods of passage of the solar terminator are presented. Tropospheric observations were performed using a lidar. The frequency characteristics of variations of the tropospheric parameters are determined based on observations of the intensity of the scattered lidar signal. The characteristics of variations of the total electron content (TEC) in the atmosphere are determined from data collected by GPS navigation satellites. An analysis of the observational data showed that the spectrum of variations of the atmospheric and ionospheric parameters is indicative of acoustic-gravity waves (AGW) propagating from the lower atmosphere. Modeling studies of the vertical propagation of AGW from the Earth’s surface showed that such waves quickly (within ~15 min) reach altitudes of the upper atmosphere (~300 km). The refraction and dissipation of waves in the upper atmosphere produces perturbations of the background state of the atmosphere and gives rise to the waveguide propagation of infrasonic wave components. The observed manifestations of TEC disturbances caused by AGW propagating from the lower atmosphere can be explained by the diurnal variation of the altitude of the ionosphere and the waveguide propagation of infrasonic waves.  相似文献   

5.
Efficient numerical models were developed for the dynamics of local and turbulent formations in a pycnocline for which the averaged flow is characterized by appearance of internal waves of soliton type. Numerical analysis of the process of initiation, interaction, and subsequent propagation of internal waves generated by two local density perturbations in a pycnocline is carried out. Anisotropic turbulence degeneration in the turbulent mixing region in a pycnocline is numerically modeled. The problem of interaction of the turbulent mixing region with the local density perturbation in a pycnocline is numerically investigated in a wide range of local perturbation parameters.  相似文献   

6.
Meng Lu  吕克利 《计算物理》2002,19(4):349-356
利用扰动法,由包括耗散和地形的准地转位涡度方程导出了强迫mKdV-Burgers方程,求得了小耗散情形下mKdV-Burgers方程的近似分析解,分析了mKdV孤波质量和能量的时间演变特性。对给定的局地地形,利用拟谱法对强迫mKdV-Burgers方程进行了数值求解。结果显示,小耗散的存在使弧波的振幅和移速随时间缓慢地减小,孤波宽度则随时间缓慢增大;在耗散和地形强迫的非线性系统中,在孤波与地形的相互作用中,耗散的存在使孤波在强迫区附近振荡传播,这有利于大振幅扰动的形成。  相似文献   

7.
李芳昱  石东平  代洪霞 《物理学报》2003,52(11):2706-2711
讨论了处于静磁场中双极化态弱平面引力波对高斯束的一阶和二阶扰动能量,数值计算表明,引力波对整个电磁体系的能量扰动很小.换言之,背景电磁场在引力波作用下其总能量不会发生明显改变,但在局部区域中产生的扰动能流则可能引起可供观测的效应. 关键词: 双极化态弱平面引力波 高斯束 电磁响应 扰动能量  相似文献   

8.
9.
黄朝松  M.C.KELLEY 《物理学报》1996,45(11):1930-1839
利用数值模拟,研究了不同条件下赤道电离层等离子体交换不稳定性的演变和扩展F不均匀体的形态。使用一维或二维初始密度扰动时,交换不稳定性可以发展成为等离子体泡,但不能产生泡壁上的羽毛状结构.大气重力波触发的交换不稳定性能在更短的时间内增长成为等离子体泡.当使用重力波和一个较小尺度密度扰动作为初始扰动时,重力波确定了赤道扩展F不均匀体的外尺度,较小尺度密度扰动则增长成为泡壁上的羽毛状结构.数值模拟结果与大量观测现象符合得很好 关键词:  相似文献   

10.
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).  相似文献   

11.
Scattering of a tonal low-frequency (up to 400 Hz) acoustic signal on a rough surface during its propagation along stationary paths in a shallow water area is considered. A calculation technique of estimating the spectral power density of the signal scattered at wind waves (reverberation) given an arbitrary angular distribution of the wind wave is developed based on the Bragg scattering model. The obtained results are compared with the results of numerical simulation of resonant sound scattering at surface perturbations according to an algorithm proposed by the authors, as well as with the results of experimental investigations.  相似文献   

12.
刘祥树  赵立臣  段亮  杨战营  杨文力 《中国物理 B》2017,26(12):120503-120503
We study localized waves on continuous wave background in an exponential dispersion decreasing fiber with two orthogonal polarization states. We demonstrate that asymmetric W-shaped and M-shaped soliton pulse can be generated from a weak modulation on continuous wave background. The numerical simulation results indicate that the generated asymmetric soliton pulses are robust against small noise or perturbation. In particular, the asymmetric degree of the asymmetric soliton pulse can be effectively controlled by changing the relative frequency of the two components. This character can be used to generate other nonlinear localized waves, such as dark–antidark and antidark–dark soliton pulse pair, symmetric W-shaped and M-shaped soliton pulse. Furthermore, we find that the asymmetric soliton pulse possesses an asymmetric discontinuous spectrum.  相似文献   

13.
张娟  周志刚  石玉仁  杨红娟  段文山 《物理学报》2012,61(13):130401-130401
采用约化摄动法, 得到描述无磁场等离子体中离子声波传播的modified Kadomtsev- Petviashvili(mKP) 方程, 构造有限差分格式对mKP方程的一类特殊孤立波解的稳定性进行数值研究. 数值结果表明: 在两种特殊情形的初始扰动下, 该孤立波均不稳定.  相似文献   

14.
Results of experimental and theoretical studies of acoustoseismic wave fields generated by surface seismic vibrators are presented. In experiments with high-power seismic vibrators operating in a frequency range of 5–10 Hz, acoustic waves were recorded at distances up to 50 km from the source. The long-range sound propagation from seismic vibration sources was observed in a near-surface waveguide arising due to temperature inversion. The effect of the acoustoseismic induction, i.e., excitation of surface seismic waves by the acoustic wave arriving from the vibrator, was also detected. The results of mathematical modeling of the acoustoseismic field generation by an operating seismic vibrator are presented. They include the modeling of the radiation of a harmonic acoustic wave’s by the vibrator, its trapping by the near-surface waveguide, the long-range low-frequency acoustic wave propagation in the presence of the waveguide, and the induction of a surface seismic wave by the arriving harmonic acoustic wave. It is shown that a seismoacoustic wave propagating at the boundary between the elastic earth and the atmosphere is an analog of the Stonely wave that appears in the presence of a near-surface low-temperature layer in the atmosphere.  相似文献   

15.
Generation of large-amplitude short-lived wave groups from small-amplitude initial perturbations in plasmas is discussed. Two particular wave modes existing in plasmas are considered. The first one is the ion-sound wave. In a plasmas with negative ions it is described by the Gardner equation when the negative ion concentration is close to critical. The results of numerical solution of the Gardner equation with the modulationally unstable initial condition are presented. These results clearly show the possibility of generation of freak ion-acoustic waves due to the modulational instability. The second wave mode is the Alfvén wave. When this wave propagates at a small angle with respect to the equilibrium magnetic field, and its wave length is comparable with the ion inertia length, it is described by the DNLS equation. Studying the evolution of an initial perturbation using the linearized DNLS equation shows that the generation of freak Alfvén waves is possible due to linear dispersive focusing. The numerical solution of the DNLS equation reveals that the nonlinear dispersive focusing can also produce freak Alfvén waves.  相似文献   

16.
The dispersion effects appearing during the propagation of acoustic waves through the plasma of a weakly ionized gas are studied. The main theoretical results are based on the equation of propagation of sound in the medium with the so-called Rayleigh energy release mechanism, which has been obtained earlier. Unlike the previous investigations, the problem of propagation of a perturbation from a source and not the problem of propagation of the initial perturbation is solved. In particular, the sources of an N-shaped shock wave and a wave in the form of a symmetrical step are analyzed in detail. It is shown that depending on the direction of wave propagation (along or across the electric field in a plasma), it degenerates either into a wave packet with a wave frequency lower than a certain frequency characterizing heating, or into a wave packet with a frequency higher than this value. In addition, a quantitative criterion is obtained, which makes it possible to estimate the plasma parameters for which it will be possible to observe the dispersion of acoustic waves in the plasma.  相似文献   

17.
We numerically investigated standing slow acoustic waves impulsively excited in a solar coronal loop by gas pressure and mass density perturbations in one-dimensional space. The corresponding computer model is described by the hydrodynamic equations that are solved numerically by means of the so-called flux limiters methods on uniformly structured mesh. We discuss the fundamental mode and the first harmonic mode which are generated in dependence on position of the initial perturbation in the numerical box. We show how the standing slow acoustic waves are generated in the corona, where they are trapped in space between two dense layers as in the resonator, and how their energy leaks from the corona to the dense layers. We found that this leakage increases with the decrease of the density jump at the transition region. We also studied the case when the perturbation is initiated at the transition region. We found that even in this case the standing wave is formed, but their energetics is influenced by the evaporation of the plasma from the transition region into the corona.  相似文献   

18.
The electromagnetic field inside a nonlinear active medium of a laser is considered as a system of counterpropagating waves. Such an approach changes radically an earlier studied behavior of the lateral field instability due to self-deformaion (or self-focusing). In our calculations we used an expression for a laser field in the form of two “strong” counterpropagating waves whose complex amplitudes have weak perturbations. Amplitude perturbations of each of the “strong” waves can be presented by two spatial harmonics corresponding to two weak perturbation waves with wave vectors making some tilted angle ±φ with the cavity axis. Thus six waves would participate in the interaction: two counterpropagating strong waves and two pairs of weak waves. Using this approach, we have developed a theory for the propagation of four “weak” perturbation waves in a nonlinear amplifying medium in the presence of two counterpropagating “strong” waves. It is shown that perturbation waves with tilted angle φ⋍0.5–1.2° inside the active region, and respecively, with the side lobes of the far-field pattern at ∼1.7–4°, have the greatest growth increment. These perturbation waves produce lateral intensity modulation with period 10–30 μm for the 0.85 μm lasing wavelength. The appearance of such waves corresponds to the instability threshold of a homogeneous lateral distribution of optical power in a diode laser. The present theory makes it possible to investigate the stability of the homogeneous lateral optical intensity distribution in a diode laser of any design. This allows one to choose a suitable design of a laser with a homogeneous lateral distribution at high radiation power. Translated from Preprint No. 43 (1992) of the Lebedev Physics Institute, Russian Academy of Sciences.  相似文献   

19.
Linear and nonlinear numerical models of dynamics of local density perturbation in a stably stratified medium are constructed. The influence of viscosity on the process of generation and propagation of internal waves generated by the local density perturbation in a pycnocline is evaluated. The problem on the dynamics of local density perturbation in the presence of wave background is considered.  相似文献   

20.
The influence of damage on waves propagating in complex geometry waveguides is investigated through a numerical model formulated by combining the Spectral Finite Element Method and Perturbation Techniques. The resulting numerical tool allows efficient computation of the wave propagation response and the analysis of the effects of damages of various extent and location. The dynamic behavior of the damaged waveguides is described through a general higher order model which couples different waves thus allowing the prediction of mode conversion phenomena. Arbitrary cross-section can be considered through Finite Element (FE) discretization according to well-established Semi-Analytical Finite Element (SAFE) procedures. Two types of damages which allow the application of perturbation theory are considered: a small localized reduction of the thickness and a reduction of material stiffness and density. A validation by comparison with a Finite Element Model as well as numerical examples are presented to illustrate the model capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号