首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition \(E_1 \cup E_2 \cup \cdots \cup E_k\) of the edge set E(G) such that each \(E_i\) induces a locally irregular graph. It was recently conjectured by Baudon et al. that every undirected graph admits a decomposition into at most three locally irregular graphs, except for a well-characterized set of indecomposable graphs. We herein consider an oriented version of this conjecture. Namely, can every oriented graph be decomposed into at most three locally irregular oriented graphs, i.e. whose adjacent vertices have distinct outdegrees? We start by supporting this conjecture by verifying it for several classes of oriented graphs. We then prove a weaker version of this conjecture. Namely, we prove that every oriented graph can be decomposed into at most six locally irregular oriented graphs. We finally prove that even if our conjecture were true, it would remain NP-complete to decide whether an oriented graph is decomposable into at most two locally irregular oriented graphs.  相似文献   

2.
We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989.  相似文献   

3.
We initiate the study of outer-2-independent domination in graphs. An outer-2-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)?D has a neighbor in D and the maximum vertex degree of the subgraph induced by V(G)?D is at most one. The outer-2-independent domination number of a graph G is the minimum cardinality of an outer-2-independent dominating set of G. We show that if a graph has minimum degree at least two, then its outer-2-independent domination number equals the number of vertices minus the 2-independence number. Then we investigate the outer-2-independent domination in graphs with minimum degree one. We also prove the Vizing-type conjecture for outer-2-independent domination and disprove the Vizing-type conjecture for outer-connected domination.  相似文献   

4.
We consider graphs whose edges are marked by numbers (weights) from 1 to q - 1 (with zero corresponding to the absence of an edge). A graph is additive if its vertices can be marked so that, for every two nonadjacent vertices, the sum of the marks modulo q is zero, and for adjacent vertices, it equals the weight of the corresponding edge. A switching of a given graph is its sum modulo q with some additive graph on the same set of vertices. A graph on n vertices is switching separable if some of its switchings has no connected components of size greater than n - 2. We consider the following separability test: If removing any vertex from G leads to a switching separable graph then G is switching separable. We prove this test for q odd and characterize the set of exclusions for q even. Connection is established between the switching separability of a graph and the reducibility of the n-ary quasigroup constructed from the graph.  相似文献   

5.
Let R be a commutative ring and Max?(R) be the set of maximal ideals of R. The regular digraph of ideals of R, denoted by \(\overrightarrow{\Gamma_{\mathrm{reg}}}(R)\), is a digraph whose vertex set is the set of all non-trivial ideals of R and for every two distinct vertices I and J, there is an arc from I to J whenever I contains a J-regular element. The undirected regular (simple) graph of ideals of R, denoted by Γreg(R), has an edge joining I and J whenever either I contains a J-regular element or J contains an I-regular element. Here, for every Artinian ring R, we prove that |Max?(R)|?1≦ωreg(R))≦|Max?(R)| and \(\chi(\Gamma_{\mathrm{ reg}}(R)) = 2|\mathrm{Max}\, (R)| -k-1\), where k is the number of fields, appeared in the decomposition of R to local rings. Among other results, we prove that \(\overrightarrow{\Gamma_{\mathrm{ reg}}}(R)\) is strongly connected if and only if R is an integral domain. Finally, the diameter and the girth of the regular graph of ideals of Artinian rings are determined.  相似文献   

6.
Consider a graph \(G=(V,E)\) and a vertex subset \(A \subseteq V\). A vertex v is positive-influence dominated by A if either v is in A or at least half the number of neighbors of v belong to A. For a target vertex subset \(S \subseteq V\), a vertex subset A is a positive-influence target-dominating set for target set S if every vertex in S is positive-influence dominated by A. Given a graph G and a target vertex subset S, the positive-influence target-dominating set (PITD) problem is to find the minimum positive-influence dominating set for target S. In this paper, we show two results: (1) The PITD problem has a polynomial-time \((1 + \log \lceil \frac{3}{2} \Delta \rceil )\)-approximation in general graphs where \(\Delta \) is the maximum vertex-degree of the input graph. (2) For target set S with \(|S|=\Omega (|V|)\), the PITD problem has a polynomial-time O(1)-approximation in power-law graphs.  相似文献   

7.
Let (L,∧, ∨) be a finite lattice with a least element 0. AG(L) is an annihilating-ideal graph of L in which the vertex set is the set of all nontrivial ideals of L, and two distinct vertices I and J are adjacent if and only if IJ = 0. We completely characterize all finite lattices L whose line graph associated to an annihilating-ideal graph, denoted by L(AG(L)), is a planar or projective graph.  相似文献   

8.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

9.
For a family \(\mathcal {F}\) of graphs, a graph U is induced-universal for \({\mathcal{F}}\) if every graph in \({\mathcal{F}}\) is an induced subgraph of U. We give a construction for an induced-universal graph for the family of graphs on n vertices with degree at most r, which has \(Cn^{\lfloor (r+1)/2\rfloor}\) vertices and \(Dn^{2\lfloor (r+1)/2\rfloor -1}\) edges, where C and D are constants depending only on r. This construction is nearly optimal when r is even in that such an induced-universal graph must have at least cn r/2 vertices for some c depending only on r.Our construction is explicit in that no probabilistic tools are needed to show that the graph exists or that a given graph is induced-universal. The construction also extends to multigraphs and directed graphs with bounded degree.  相似文献   

10.
In this paper, we introduce a new graph parameter called the domination defect of a graph. The domination number γ of a graph G is the minimum number of vertices required to dominate the vertices of G. Due to the minimality of γ, if a set of vertices of G has cardinality less than γ then there are vertices of G that are not dominated by that set. The k-domination defect of G is the minimum number of vertices which are left un-dominated by a subset of γ - k vertices of G. We study different bounds on the k-domination defect of a graph G with respect to the domination number, order, degree sequence, graph homomorphisms and the existence of efficient dominating sets. We also characterize the graphs whose domination defect is 1 and find exact values of the domination defect for some particular classes of graphs.  相似文献   

11.
A stable set in a graph G is a set of pairwise non-adjacent vertices, and the stability number α(G) is the maximum size of a stable set in G. The independence polynomial of G is
$I(G; x) = s_{0}+s_{1}x+s_{2}x^{2}+\cdots+s_{\alpha}x^{\alpha},\alpha=\alpha(G),$
where s k equals the number of stable sets of cardinality k in G (Gutman and Harary [11]).
Unlike the matching polynomial, the independence polynomial of a graph can have non-real roots. It is known that the polynomial I(G; x) has only real roots whenever (a) α(G) = 2 (Brown et al. [4]), (b) G is claw-free (Chudnowsky and Symour [6]). Brown et al. [3] proved that given a well-covered graph G, one can define a well-covered graph H such that G is a subgraph of H, α(G) = α(H), and I(H; x) has all its roots simple and real.In this paper, we show that starting from a graph G whose I(G; x) has only real roots, one can build an infinite family of graphs, some being well-covered, whose independence polynomials have only real roots (and, sometimes, are also palindromic).  相似文献   

12.
A graph is symmetric or 1-regular if its automorphism group is transitive or regular on the arc set of the graph, respectively. We classify the connected pentavalent symmetric graphs of order 2p~3 for each prime p. All those symmetric graphs appear as normal Cayley graphs on some groups of order 2p~3 and their automorphism groups are determined. For p = 3, no connected pentavalent symmetric graphs of order 2p~3 exist. However, for p = 2 or 5, such symmetric graph exists uniquely in each case. For p 7, the connected pentavalent symmetric graphs of order 2p~3 are all regular covers of the dipole Dip5 with covering transposition groups of order p~3, and they consist of seven infinite families; six of them are 1-regular and exist if and only if 5 |(p- 1), while the other one is 1-transitive but not 1-regular and exists if and only if 5 |(p ± 1). In the seven infinite families, each graph is unique for a given order.  相似文献   

13.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

14.
Let \(\Gamma \) be a distance-regular graph with diameter d and Kneser graph \(K=\Gamma _d\), the distance-d graph of \(\Gamma \). We say that \(\Gamma \) is partially antipodal when K has fewer distinct eigenvalues than \(\Gamma \). In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues) and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with \(d+1\) distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a more general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.  相似文献   

15.
A graph G on n vertices is said to be (km)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each integer r in the set \(\{ m, m + 1, \ldots , n \}\). This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree et al. in (Graphs Combin 20:291–310, 2004). The notion of (km)-pancyclicity provides one way to measure the prevalence of cycles in a graph. Broersma and Veldman showed in (Contemporary methods in graph theory, BI-Wiss.-Verlag, Mannheim, Wien, Zürich, pp 181–194, 1990) that any 2-connected claw-free \(P_5\)-free graph must be hamiltonian. In fact, every non-hamiltonian cycle in such a graph is either extendable or very dense. We show that any 2-connected claw-free \(P_5\)-free graph is (k, 3k)-pancyclic for each integer \(k \ge 2\). We also show that such a graph is (1, 5)-pancyclic. Examples are provided which show that these results are best possible. Each example we provide represents an infinite family of graphs.  相似文献   

16.
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function f T ; called binding function, depending only on T with the property that every graph G with chromatic number f T (ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14 r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6 r?2) times.  相似文献   

17.
The diversity vectors of balls are considered (the ith component of a vector of this kind is equal to the number of different balls of radius i) for the usual connected graphs and the properties of the components of the vectors are studied. The sharp upper and lower estimates are obtained for the number of different balls of a given radius in the n-vertex graphs (trees) and n-vertex trees (graphs with n ? 2d) of diameter d. It is shown that the estimates are precise in every graph regardless of the radius of balls. It is proven a necessary and sufficient condition is given for the existence of an n-vertex graph of diameter d with local (complete) diversity of balls.  相似文献   

18.
The invisibility graph I(X) of a set X ? R d is a (possibly infinite) graph whose vertices are the points of X and two vertices are connected by an edge if and only if the straight-line segment connecting the two corresponding points is not fully contained in X. We consider the following three parameters of a set X: the clique number ω(I(X)), the chromatic number χ(I(X)) and the convexity number γ(X), which is the minimum number of convex subsets of X that cover X.We settle a conjecture of Matou?ek and Valtr claiming that for every planar set X, γ(X) can be bounded in terms of χ(I(X)). As a part of the proof we show that a disc with n one-point holes near its boundary has χ(I(X)) ≥ log log(n) but ω(I(X)) = 3.We also find sets X in R5 with χ(X) = 2, but γ(X) arbitrarily large.  相似文献   

19.
20.
An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G, denoted by pc(G), is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc(G) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2-coloring for a connected bipartite graph G having δ(G) ≥ 2 and a dominating cycle or a dominating complete bipartite subgraph, which implies pc(G) = 2. Furthermore, we get that the proper connection number of connected bipartite graphs with δ ≥ 2 and diam(G) ≤ 4 is two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号