首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
New ketonylplatinum(III) dinuclear complexes [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COPh)](NO(3))(3) (4), [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(CH(3))COC(2)H(5))](NO(3))(3) (5), and [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(2)COCH(3))](NO(3))(3) (6) were prepared by treatment of platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with acetophenone, 3-pentanone, and acetylacetone, respectively, in the presence of concentrated HNO(3). The structures of complexes 4 and 6 have been confirmed by X-ray diffraction analysis, which revealed that the C-H bonds of the methyl groups in acetophenone and acetylacetone have been cleaved and Pt(III)-C bonds are formed. Formation of diketonylplatinum(III) complex 6 provides a novel example of the C-H bond activation not at the central alpha-C-H but at the terminal methyl of acetylacetone. Reaction with butanone having unsymmetrical alpha-H atoms led to two types of ketonylplatinum(III) complexes [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(CH(3))COCH(3))](NO(3))(3) (7a) and [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(2)CH(3))](NO(3))(3) (7b) at a molar ratio of 1.7 to 1 corresponding to the C-H bond activation of methylene and methyl groups, respectively. Use of 3-methyl-2-butanone instead of butanone gave complex [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(CH(3))(2))](NO(3))(3) (8) as a sole product via C-H bond activation in the alpha-methyl group. The reactivity of the ketonylplatinum(III) dinuclear complexes toward nucleophiles, such as H(2)O and HNEt(2), was examined. The alpha-hydroxyl- and alpha-amino-substituted ketones were generated in the reactions of [Pt(2)((CH(3))(3)CCONH)(2)(NH(3))(4)(CH(2)COCH(3))](NO(3))(3) (1), 5, and a mixture of 7a and 7b with water and amine, which indicates that the carbon atom in the ketonyl group bound to the Pt(III) atom can receive a nucleophilic attack. The high electrophilicity of the ketonylplatinum(III) complexes can be accounted for by the high electron-withdrawing ability of the platinum(III) atom. A competition between the radical and electrophilic displacement pathways was observed directly in the C-H bond activation reaction with butanone giving complexes 7a and 7b. Addition of a radical trapping agent suppressed the radical pathway and gave complex 7b as the predominant product. On the contrary, 7a was formed as the main product when the reaction solution was irradiated by mercury lamp light. These results together with other mechanistic studies demonstrate that complex 7a was produced via a radical process, whereas complex 7b is produced via electrophilic displacement of a proton by the Pt(III) atom. The competitive processes were further observed in the reactions of platinum blue complex 2 with a mixture of acetone and 3-pentanone in the presence of HNO(3). The relative molar ratio of acetonyl complex 1 to pentanoyl complex 5 was 3 to 1 under room light, whereas formation of complex 5 was almost suppressed when the reaction was carried out in the dark with the addition of a radical trapping agent.  相似文献   

2.
Hydrotris(triazolyl)borate (Ttz) ligands form CuNO(x) (x = 2, 3) complexes for structural and functional models of copper nitrite reductase. These complexes have distinct properties relative to complexes of hydrotris(pyrazolyl)borate (Tp) and neutral tridentate N-donor ligands. The electron paramagnetic resonance spectra of five-coordinate copper complexes show rare nitrogen superhyperfine couplings with the Ttz ligand, indicating strong σ donation. The copper(I) nitrite complex [PPN](+)[(Ttz(tBu,Me))Cu(I)NO(2)](-) has been synthesized and characterized and allows for the stoichiometric reduction of NO(2)(-) to NO with H(+) addition. Anionic Cu(I) nitrite complexes are unusual and are stabilized here for the first time because Ttz is a good π acceptor.  相似文献   

3.
This paper describes the preparation of [Cu(bh)(2)(H(2)O)(2)](NO(3))(2)], [Cu(ibh)(2)(NO(3))(2)], [Cu(ibh)(2)(H(2)O)(2)](NO(3))(2) and [Cu(iinh)(2)(NO(3))(2)] (bh=benzoyl hydrazine (C(6)H(5)CONHNH(2)); ibh=isonicotinoyl hydrazine (NC(5)H(4)CONHNH(2)); ibh=isopropanone benzoyl hydrazone (C(6)H(5)CONHN=C(CH(3))(2); iinh=isopropanone isonicotinoyl hydrazone (NC(5)H(4)CONHN=C(CH(3))(2)). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77K in DMSO solution. The trend g(||)>g( perpendicular)>g(e,) observed in all the complexes suggests the presence of an unpaired electron in the [Formula: see text] orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >CO and NH(2) groups whereas, ibh and iinh bond through >CO and >CN groups. The IR spectra of bh and ibh complexes also show HOH stretching and bending modes of coordinated water.  相似文献   

4.
The bond dissociation energies of CuNO(+), Cu(NO)(2)(+), and CuAr(+) are determined by means of guided ion beam mass spectrometry and quantum chemical calculations. From the experiment, the values D(0)(Cu(+)-NO) = 1.13 +/- 0.05, D(0)(ONCu(+)-NO) = 1.12 +/- 0.06, D(0)(Cu(+)-Ar) = 0.50 +/- 0.07, and D(0)(Cu(+)-Xe) = 1.02 +/- 0.06 eV are obtained. The computational approaches corroborate these results and provide additional structural data. The relative values of D(0)(Cu(+)-NO) and D(0)(Cu(+)-Xe) are consistent with the approximately thermoneutral formation of CuXe(+) upon interacting CuNO(+) with xenon. The sequential bond dissociation energies of Cu(NO)(2)(+) exhibit a trend similar to those of other Cu(I) complexes described in the literature. Although metathesis of nitric oxide to N(2) and O(2) is of considerable interest, no evidence for N-N- or O-O-bond formations in Cu(NO)(n)(+) ions (with n up to 3) is obtained within the energy range studied experimentally.  相似文献   

5.
The synthesis and characterization of a {CuNO}(10) complex, namely, [Cu(CH(3)NO(2))(5)(NO)][PF(6)](2), has been achieved by the addition of [NO][PF(6)] to copper metal powder in the presence of nitromethane. In the solid state, this complex exhibits a bent Cu-N-O moiety [Cu-N-O = 121.0(3)°] and a long Cu-N bond. This complex readily reacts with mesitylene to form [mesitylene, NO][PF(6)] and [Cu(η(2)-1,3,5-Me(3)C(6)H(3))(2)][PF(6)] by transfer of NO(+) to the mesitylene ring.  相似文献   

6.
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.  相似文献   

7.
Two new 5-formyluracil thiosemicarbazone (H(3)ut) derivatives, Me-H(3)ut (1) and Me(2)-H(3)ut (2), were synthesized by reacting thiosemicarbazides, mono- and dimethylated on the aminic nitrogen, with 5-formyluracil and were subsequently characterized. These ligands, treated with copper chloride and nitrate, afforded three complexes: [Cu(Me-H(3)ut)Cl(2)].H(2)O (3), [Cu(Me(2)-H(3)ut)Cl(2)].H(2)O (4), and [Cu(Me-H(3)ut)(NO(3))(OH(2))(2)]NO(3) (5). The crystal structures of these complexes have been determined by single-crystal X-ray diffraction. In 3 and 4, a similar pentacoordination is present; the copper atom is surrounded by the ligand SNO donor atoms and by two chloride ions. The structure of 5 consists of [Cu(Me-H(3)ut)(NO(3))(OH(2))(2)](+) cations and nitrate anions. The copper coordination (4 + 2) involves the SNO ligand atoms and a water oxygen in the basal plane; the apical positions are occupied by a second water oxygen and by an oxygen of a monodentate nitrate group. Two biochemical techniques, namely DNA titration in the UV-vis region and thermal denaturation, have been employed to probe the details of DNA binding of these compounds. Analysis of the results suggests that our compounds are able to interact with DNA by electrostatic and groove binding but not by intercalation. The compounds have been also tested in vitro on human leukemic cell line U937, but they are not able to inhibit significantly cell proliferation.  相似文献   

8.
By means of hybrid method of the density functional B3LYP with 6-31G(d) basis set we carried out calculation of geometric parameters of Co(II), Co(III), Ni(II) and Cu(II) complexes with macrocyclic ligand formed at the template processes in the systems M(II)-dithiooxamide-acetone with NNSS-coordination of donor centers. Atomic coordinates, bond lengths, bond angles and dihedral angles in the complexes with metallochelate node MN2S2 are listed. In the cases of Ni(II) and Cu(II) this chelate node is practically planar while in the case of Co(II) is tetrahedral. An additional six-membered metallocycle formed as a result of template “stitching” is screwed and turned by enough significant angle relative to five-membered rings.  相似文献   

9.
Ionization of esters of carboxylic acids RCOOR' (R = H, alkyl; R' = alkyl) within the air plasma of the Atmospheric Pressure Chemical Ionization (APCI) source occurs largely via H(+)-transfer and, to a minor extent, via NO(+) association. The protonated ester MH(+) is normally observed as M(2)H(+) and as higher aggregates (M(3)H(+), M(3)H(+)(H(2)O)) also at high source temperature. The behavior of M(2)H(+) upon collisional activation is consistent with the reported dissociation of proton-bound dimers to MH(+) species that, in turn, fragment according to the known paths of lowest energy. In addition, other important product ions form within the plasma, some in very high relative abundance, which are attributed to ion-molecule condensation reactions between neutral M and either MH(+) or M(2)H(+) resulting in the elimination of CO, R'OH, alkene from the alkoxy moiety of the ester and HCOOH. A general scheme is proposed to account for the experimental observations, which suggest that the encounter complex formed between MH(+) and M or between M(2)H(+) and M may either collisionally relax to the protonated dimer or trimer, respectively, or react via covalent bond forming and cleaving steps to eliminate stable neutral molecules. The proposed scheme is supported by both the observed concentration dependence and the temperature dependence of the products relative abundances within the plasma. Such reactions can be the dominant process, as in the case of formate esters. A second significant ionization route involves addition of NO(+) to form M(n)NO(+) (n = 1, 2, 3). An additional product corresponding to [M(2)NO(+) - CO(2)] is also observed with iso- and n-butyl formate esters.  相似文献   

10.
New bidentate N-(2,5-di-tert-butylphenyl)salicylaldimines bearing X = H, HO, CH3O, Br, NO2, 3,5-di-Br, 3-NO2-5-Br and 5,6-benzo substituents on the salicylaldehyde moiety, LxH, and their mononuclear bis[N-(2,5-di-tert-butylphenyl)salicylaldiminato]copper(II) complexes, Cu(Lx)2, have been prepared and investigated by IR, UV-Visible, 1H NMR, ESR spectroscopy, magnetic measurements, as well as reactions of Cu(LX)2 with PPh3 were studied. It has been found that some complexes with X = HO and CH3O unlike their electron-withdrawing and unsubstituted analogues are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give Cu-stabilized radical intermediates. The spectra of the primary radicals interpreted in terms of couplings of unpaired electron with (63,65)Cu, 31P, 14N nuclei and aromatic protons.  相似文献   

11.
Nine dinuclear copper(II) complexes with hxta5- ligands [H5hxta = N,N'-(2-hydroxy-1,3-xylylene)-bis-(N-carboxymethylglycine)]: [Cu2(MeO-hxtaH)(H2O)2] x 4H2O (1), [Na(micro-H2O)2(H2O)6][Cu2(Cl-hxta)(H2O)3]2 x 6H2O (2), [Cu(H2O)6][Cu2(Me-hxta)(H2O)2](NO3) x 2H2O (3), [Cu2(R-hxtaH)(H2O)3] x 3H2O [R = Cl (4), CH3 (5), and MeO (6)], [Cu2(MeO-hxtaH2)(micro-X)(CH3OH)] x 3CH3OH [X = Cl (7), Br (8)] and K5Na(micro-H2O)10[Cu2(micro-CO3)(Me-hxta)]2 x 4H2O (9), have been synthesized and structurally characterized. In complexes 4-7, the dinuclear units are linked via novel pairwise supramolecular interactions involving the ligand carboxylate groups. The intra- and intermolecular magnetic interactions have been quantified, and the coupling constants have been related to the structural geometries.  相似文献   

12.
Density functional theory methods have been used to investigate the role and effects of Cu+ binding to the S and N centers of the -SNO functional group within S-nitrosothiols (RSNOs), on the lability of the NO group. The binding of Cu+ to the S center is found to weaken the S-N bond, while the N-O bond is concomitantly strengthened, consistent with the notion that Cu+ binding catalyzes NO radical release. In contrast, however, the binding of Cu+ to the N center is found to dramatically shorten and strengthen the S-N bond with a concomitant lengthening of the N-O bond, suggesting stabilization of the RSNOs against NO release. Upon solvation, complexes with Cu+ bound to the N center are stabilized relative to the corresponding S-bound complexes, though remaining slightly higher in energy. The barriers to interconversion between corresponding isomers were also investigated. Implications for biochemical regulation of NO release from RSNOs are discussed.  相似文献   

13.
Unimolecular dissociation of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) generates SiC(5)H(16)NO(+) and SiC(5)H(14)N(+). The formation of SiC(5)H(16)NO(+) involves dissociation of a Si[bond]O bond and formation of an O[bond]H bond through rearrangement. The fragmentation mechanism was investigated utilizing ab initio calculations and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in combination with hydrogen/deuterium (H/D) exchange reactions. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) studies of the fully deuterated ion D(2)N(CH(2))(3)SiOSi(CH(2))(3)ND(3)(+) provided convincing evidence for a backbiting mechanism which involves hydrogen transfer from the terminal amine group to the oxygen to form a silanol-containing species. Theoretical calculations indicated decomposition of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) through a backbiting mechanism is the lowest energy decomposition channel, compared with other alternative routes. Two mechanisms were proposed for the fragmentation process which leads to the siloxane bond cleavage and the SORI-CID results of partially deuterated precursor ions suggest both mechanisms should be operative. Rearrangement to yield a silanol-containing product ion requires end groups possessing a labile hydrogen atom. Decomposition of disiloxane ions with end groups lacking labile hydrogen atoms yielded product ions from direct bond cleavages.  相似文献   

14.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

15.
 配体及配合物的结构对催化烯烃-CO完全交替共聚反应活性及稳定性具有重要的影响. IR和XPS实验结果表明,5-硝基-1,10-菲咯啉的钯配合物催化苯乙烯-CO共聚的高活性与其结构的不对称性有关; 揭示了廉价的Cu金属双膦螯合物作为新型乙烯-CO交替共聚催化剂具有一定的可行性,探讨了配合物结构对烯烃-CO共聚反应活性及稳定性的影响,同时通过IR,1H NMR和13C NMR确认了所得交替共聚物聚酮的结构.  相似文献   

16.
Complexes of a N,N-bis(2-picolyl)amine (bpa) derivative with a pendant ethoxyethanol side chain (bpa(CH2)2O(CH2)2OH) (1) with late divalent transition metal ions Co(II), Ni(II), Cu(II) and Zn(II) have been studied. All complexes, [[bpa(CH2)2O(CH2)2OH]Co(NO3)](NO3) (1Co), [[bpa(CH2)2O(CH2)2OH]Ni(NO3)](NO3) (1Ni), [[bpa(CH2)2O(CH2)2OH]Cu(H2O)(NO3)](NO3) (1Cu) and [[bpa(CH2)2O(CH2)2OH]Zn(NO3)](NO3) (1Zn), were comprehensively characterized and their X-ray single crystal structures have been determined. The complexes show hexacoordinated geometries, in which 1 acts as a tetradentate (1Cu) or pentadentate (1Co, 1Ni and 1Zn) ligand. DNA cleavage experiments have been performed on supercoiled double stranded DNA plasmids in order to compare the cleavage efficiency of all four metals in the same ligand environment of 1. In this assay, 1Co and 1Cu showed the highest cleavage efficiency, whereas 1Ni and 1Zn were virtually inactive. Quantification of the gel electrophoresis bands showed that more than 80% of the plasmid has suffered at least one single strand cut in the case of 1Cu, and about 50% of the plasmid was nicked by 1Co. The differential cleavage activity is discussed in relation to the structural findings and a mechanism is proposed for 1Cu.  相似文献   

17.
The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).  相似文献   

18.
A series of unusual dinuclear mu2-(eta2-NO)-nitrosoaniline-bridged complexes [[(CO)3Re(mu-X)]2ONC6H4NR2] (X = Cl, Br, I; R = Me, Et) with dichroic properties have been synthesised by reaction of pentacarbonylhalogenorhenium(I) [(CO)5ReX] (X = Cl, Br, I) with the corresponding nitrosoaniline derivatives R2NC6H4NO (R = Me, Et). The deeply coloured solutions in CH2Cl2 show broad UV/Vis absorptions from 595 to 620 nm depending on the halogen bridges and N substituents. Single crystals of all six compounds exhibit a pronounced linear dichroism. The molecular structures have been determined by single-crystal X-ray analyses. All the compounds contain two face-shared octahedra, with two halogens and one NO ligand as bridges. The NO ligand coordinates in a nonsymmetrical eta2-like fashion with N or O coordination to each Re centre. Therefore, the C-nitroso group and the planar NC2 moiety of NR2 both lie almost exactly within the symmetry plane of the dinuclear complexes. These complexes belong to the novel and simple class of neutral dinuclear C-nitroso complexes that include the rare, non-assisted mu2-(eta2-NO) ligand function and have only single halogen atoms in bridging positions.  相似文献   

19.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

20.
The reactivity of several transition metal half sandwich complexes towards an anionic gallium(I) heterocyclic complex, [K(tmeda)][Ga{[N(Ar)C(H)]2}](Ar = C6H3Pri2-2,6), has been investigated. This has led to the anionic half sandwich complexes, [K(tmeda)][(C5H4R)M(CO)n[Ga{[N(Ar)C(H)]2}]](M = V, R = H, n= 3; M = Mn, R = Me, n= 2; M = Co, R = H, n= 1), which crystallographic studies show to form dimers (M = Mn and Co) or a polymer (M = V) through bridging potassium cations. The metal-gallium bond lengths in all complexes are very short which, combined with some spectroscopic evidence, is suggestive of M-Ga pi-bonding. Density functional theory studies of models of all complexes indicate that the level of back-bonding in these complexes is, however, minimal and of a similar order to that seen in analogous complexes incorporating neutral N-heterocyclic carbene ligands. Reactions of the metallocenes, [M(C5H4Me)2](M = V or Cr), with the digallane4, [Ga{[N(Ar)C(H)]2}]2, have afforded the neutral complexes, [M(C5H4Me)2[Ga{[N(Ar)C(H)]2}]], which are thought to be formed via an initial oxidative insertion of the transition metal centre into the Ga-Ga bond of the digallane. X-Ray crystallography shows the complexes to be monomeric. One (M = V) reacts with one equivalent of [K(tmeda)][Ga{[N(Ar)C(H)]2}] to give the crystallographically characterised, anionic bis(gallyl)-complex, [K(tmeda)][V(C5H4Me)2[Ga{[N(Ar)C(H)]2}]2]. For comparison, the reaction of [K(tmeda)][Ga{[N(Ar)C(H)]2}] with [Mn{CH(SiMe3)2}2] was carried out and gave the monomeric, anionic complex, [K(tmeda)][Mn{CH(SiMe3)2}2[Ga{[N(Ar)C(H)]2}]].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号