首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupled problem of the forced axisymmetric vibrations and self-heating of electrothermoviscoelastic cylindrical shells with piezoceramic actuators under monoharmonic electromechanical loading is solved. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The coupled nonlinear problem of electrothermoelasticity is solved by using a time-marching method with discrete orthogonalization at each time step (to integrate the equations of elasticity) and an explicit finite-difference method (to solve the heat-conduction equations). An analysis is made of the effect of the boundary conditions at the shell ends, the dimensions of the piezoactuator, and the self-heating temperature on the actuator voltage and the effectiveness of active damping of the forced vibrations of the shell under uniform transverse monoharmonic pressure  相似文献   

2.
The forced monoharmonic vibrations and self-heating of a circular thermoviscoelastic plate with piezoelectric sensor and actuator are studied. The viscoelastic behavior of the passive (without piezoeffect) and piezoactive materials is described using the concept of complex moduli. The problems of electroelasticity and heat conduction are solved numerically, assuming that the mechanical load is unknown. The effect of self-heating on the active damping of the vibrations of the plate is analyzed  相似文献   

3.
Analysis of laminated piezoelectric cylindrical shells   总被引:2,自引:0,他引:2  
A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell. The project supported by the National Natural Science Foundation of China (19572027)  相似文献   

4.
S. P. Timoshenko Institute of Mechanics of the Ukrainian Academy of Sciences, Kiev. "Energiya" Scientific-Industrial Association, Moscow. Translated from Prikladnaya Mekhanika, Vol. 30, No. 5, pp. 24–31, May, 1994.  相似文献   

5.
This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.  相似文献   

6.
7.
The isothermal response of a viscoelastic cylindrical shell, of finite length, to arbitary axisymmetric surface forces, initial conditions, and boundary conditions is considered within the linear theory of thin shells. The problem is formulated with the effects of shear deformation and rotatory inertia included; the viscoelastic properties are assumed to be isotropic and homogeneous. The response is first found formally in terms of a causal Green's function. It is then shown that when Poisson's ratio is constant, the causal Green's function can be expanded in a series of orthonormal spatial eigenfunctions of an associated elastic shell eigenvalue problem. The resulting solution for the general problem is an eigenfunction series with Laplace transformed time-dependent coefficients. The general solution is applied to predicting the motion of a uniform, simply-supported cylindrical shell, initially quiescent, which is subjected to a step pressure moving with constant velocity. For this example, the relaxation function of the shell material in uniaxial extension is taken to be that of a standard linear solid. The motions predicted by simpler shell models, namely, shells with bending only and without bending, are also considered for comparison. Here, the absolute values of the Fourier coefficients in the shell displacement series go to zero faster than the inverse of the first or second power of positive integers when bending is excluded or included, respectively. Numerical results are presented for a moderately long and relatively thick, nearly elastic, cylindrical shell.  相似文献   

8.
Vitebsk State Pedagogical Institute, Belarus. Translated from Prikladnaya Mekhanika, Vol. 28, No. 9, pp. 50–55, September, 1992.  相似文献   

9.
10.
The paper deals with a conjugate problem of harmonic electromechanical vibrations and dissipative heating of a thin closed spherical and an infinitely long cylindrical piezoelectric shells with allowance for the temperature dependence of the viscoelastic properties and the phenomenon of thermal depolarization. The presence of an acoustic medium inside and outside the shell is taken into account. An explicit expression is derived for the critical electrical load for the case of constant electromechanical characteristics. Using a spherical shell as an example, we study the effect that the frequency of the harmonic load, the geometric parameters, and the external acoustic medium have on the critical electrical load as well as the temperature dependence of the electromechanical properties, including the Curie point, on the temperature-frequency characteristics. Translated from Prikladnaya Mekhanika, Vol. 35, No. 11, pp. 62–67, November, 1999.  相似文献   

11.
It was noted long ago [1] that the material strength theory develops both by improving computational methods and by widening the physical foundations. In the present paper, we develop a computational technique based on asymptotic methods, first of all, on the homogenization method [2, 3]. A modification of the homogenization method for plates periodic in the horizontal projection was proposed in [4], where the bending of a homogeneous plate with periodically repeating inhomogeneities on its surface was studied. A more detailed asymptotic analysis of elastic plates periodic in the horizontal projection can be found, e.g., in [5, 6]. In [6], three asymptotic approximations were considered, local problems on the periodicity cell were obtained for them, and the solvability of these problems was proved. In [7], it was shown that the techniques developed for plates periodic in the horizontal projection can also be used for laminated plates. In [7], this was illustrated by an example of asymptotic analysis of an isotropic plate symmetric with respect to the midplane.  相似文献   

12.
Non-linear vibrations of doubly curved shallow shells   总被引:1,自引:0,他引:1  
Large amplitude (geometrically non-linear) vibrations of doubly curved shallow shells with rectangular base, simply supported at the four edges and subjected to harmonic excitation normal to the surface in the spectral neighbourhood of the fundamental mode are investigated. Two different non-linear strain-displacement relationships, from the Donnell's and Novozhilov's shell theories, are used to calculate the elastic strain energy. In-plane inertia and geometric imperfections are taken into account. The solution is obtained by Lagrangian approach. The non-linear equations of motion are studied by using (i) a code based on arclength continuation method that allows bifurcation analysis and (ii) direct time integration. Numerical results are compared to those available in the literature and convergence of the solution is shown. Interaction of modes having integer ratio among their natural frequencies, giving rise to internal resonances, is discussed. Shell stability under static and dynamic load is also investigated by using continuation method, bifurcation diagram from direct time integration and calculation of the Lyapunov exponents and Lyapunov dimension. Interesting phenomena such as (i) snap-through instability, (ii) subharmonic response, (iii) period doubling bifurcations and (iv) chaotic behaviour have been observed.  相似文献   

13.
A compressive postbuckling analysis is presented for a laminated cylindrical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell thickness, and the electric field is assumed to be the transverse component EZ only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Kármán–Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, applied voltage, shell geometric parameter, stacking sequence, as well as initial geometric imperfections are studied.  相似文献   

14.
15.
以纤维压电MFC (Micro-Fiber Composite)层合圆柱壳为例,研究了其在准静态屈曲下的非线性振动响应。基于Reissner-Mindlin一阶剪切变形假设,采用大转角几何全非线性理论,建立了带有纤维角度的MFC层合壳结构的非线性屈曲与振动分析模型。采用全拉格朗日方程(Total Lagrange Formulation)对非线性模型进行线性化处理,并结合Riks-Wempner弦长控制迭代法进行准静态求解,然后在每个解点进行自由振动分析。通过与文献数据对比验证了所建模型的准确性。并用该计算模型对MFC-d31层合圆柱壳进行屈曲及自由振动分析,研究了几何参数(曲率、厚度、纤维角度和不同外加电压)对频率的影响。结果表明,厚度、曲率和纤维增强角度对结构的临界载荷有显著的影响,且结构的临界载荷随着上述参数的增大而增大;电场强度可对不同纤维角度壳体的自振频率进行调节,能够提高结构的临界载荷;纤维角度越大,电压对结构自振频率调节的效果越明显。  相似文献   

16.
17.
18.
The paper proposes a numerical-analytic approach to studying the free vibrations of orthotropic shallow shells with double curvature and rectangular planform. The approach is based on the spline-approximation of unknown functions. Calculations are carried out for different types of boundary conditions. The influence of the mid-surface curvature and variable thickness on the behavior of dynamic characteristics is studied __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 6, pp. 102–115, June 2007.  相似文献   

19.
20.
The forced vibrations of a cylindrical orthotropic shell are studied. Two types of boundary conditions on the outer surface are examined considering that the displacement vector prescribed on the inner surface varies harmonically with time. Asymptotic solutions of associated dynamic equations of three-dimensional elasticity are found. Amplitudes of forced vibrations are determined and conditions under which resonance occurs are established. Boundary-layer functions are defined. The rate of their decrease with distance from the ends inside the shell is determined. A procedure of joining solutions for the internal boundary-layer problem is outlined in the case for the, if clamping boundary conditions are prescribed at the ends  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号