首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Sc-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 400 degrees C by MOCVD. Both the experimental data and theoretical calculations indicate that Sc3+ doping shrinks the CdO lattice parameters due to its relatively small six-coordinate ionic radius, 0.89 angstroms, vs 1.09 angstroms for Cd2+. Conductivities as high as 18100 S/cm are achieved for CSO films grown on MgO(100) at a Sc doping level of 1.8 atom %. The CSO thin films exhibit an average transmittance >80% in the visible range. Sc3+ doping widens the optical band gap from 2.7 to 3.4 eV via a Burstein-Moss energy level shift, in agreement with the results of band structure calculations within the sX-LDA (screened-exchange local density approximation) formalism. Epitaxial CSO films on single-crystal MgO(100) exhibit significantly higher mobilities (up to 217 cm2/(V x s)) and carrier concentrations than films on glass, arguing that the epitaxial CSO films possess fewer scattering centers and higher doping efficiencies due to the highly textured microstructure. Finally, the band structure calculations provide a microscopic explanation for the observed dopant size effects on the structural, electronic, and optical properties of CSO.  相似文献   

2.
The nanostructure Ni-doped CdO films have been prepared by sol gel spin coating method. Atomic force microscopy results indicate that the CdO films are formed from the nanoparticles and the grain size is changed with nickel content. X-ray diffraction patterns of the films indicate that the undoped and Ni-doped CdO films have polycrystalline structure with a cubic sodium chloride structure, showing two main characteristic peaks assigned to the (111) and (200) planes. The optical band gap values of undoped and Ni-doped CdO films were determined by optical absorption method. The Eg values of the CdO films were found to be in the range of 2.26–2.60 eV. The Eg values of the CdO films increase with the content of Ni dopant (up to 6% Ni). It is evaluated that the optical band gap and grain size of the CdO film can be controlled by doping with nickel atoms.  相似文献   

3.
In this work, tellurium (Te) doped CdO nanoparticles thin films with different Te concentrations (1, 3, 5, 7 and 10 %) were prepared by sol–gel method. The effects of Te doping on the structural, morphological and optical properties of the CdO thin films were systematically studied. From X-ray diffraction spectra, it has seen that all of thin films were formed polycrystalline and cubic structure having (111), (200) and (311) orientations. The structure of CdO thin films with Te-dopant was formed the unstable CdTeO3 monoclinic structure crystal plane ( $ {\bar{\text{1}}\text{22}} $ 1 ¯ 22 ), however, the intensity of this unstable peak of the crystalline phase decreased with the increase of Te-doping ratio. The strain in the structure is also studied by using Williamson-Hall method. From FE-SEM images, it has seen that particles have homogeneously distributed and well hold onto the substrate surface. Additionally, grain size increases from 27 to 121 nm with the increase of Te-doping ratio. Optical results indicate that 1 % Te-doped CdO thin film has the maximum transmittance of about 87 %, and the values of optical energy band gap increases from 2.50 to 2.64 eV with the increase of Te-doping ratio. These results make Te-doped CdO thin films an attractive candidate for thin film material applications.  相似文献   

4.
Pure and antimony (Sb) doped CdO films were grown using sol–gel spin coating technique. The structural properties of the films were investigated using atomic force microscopy. The structure of CdO film is converted from microrods to nanorods with Sb dopant. The analysis of optical absorption revealed that optical bandgap of the films changes with doping. The optical bandgap for 0.1, 0.5, 1.0, and 2.0% Sb doped CdO was determined to be 2.28, 2.30, 2.56, and 2.42 eV, respectively. Other optical constants such as refractive index, extinction coefficient, and dielectric constants were calculated using the optical data. The refractive index dispersion of the films obeys the single oscillator model. The volume and surface energy loss functions were calculated and observed to increase with increase in the photon energy.  相似文献   

5.
A series of low-melting, thermally stable cadmium metal-organic chemical vapor deposition (MOCVD) precursors have been synthesized, structurally and spectroscopically characterized, and implemented in growth of highly conductive and transparent CdO thin films. One member of the series, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N-diethyl-N',N'-dimethyl-ethylenediamine)cadmium(II), Cd(hfa)(2)()(N,N-DE-N',N'-DMEDA), represents a particularly significant improvement over previously available Cd precursors, owing to the low melting point and robust thermal stability. High-quality CdO films were grown by MOCVD on glass and single-crystal MgO(100) between 300 and 412 degrees C. Film growth parameters and substrate surface have large effects on microstructure and electron carrier transport properties. Enhanced mobilities observed for highly biaxially textured films grown on MgO(100) vs glass are attributed, on the basis of DC charge transport and microstructure analysis, to a reduction in neutral impurity scattering and/or to a more densely packed grain microstructure. Although single-grained films grown on MgO(100) exhibit greater mobilities than analogues with discrete approximately 100 nm grains and similar texture, this effect is attributed, on the basis of charge transport and Hall effect measurements as well as optical reflectivity analysis, to differences in carrier concentration rather than to reduced grain boundary scattering. Unprecedented conductivities and mobilities as high as 11,000 S/cm and 307 cm(2)/V.s, respectively, are obtained for epitaxial single-grained films (X-ray diffraction parameters: fwhm(omega) = 0.30 degrees, fwhm(phi) = 0.27 degrees ) grown in situ on MgO(100) at a relatively low temperature (400 degrees C).  相似文献   

6.
Gd-doped CdO thin films with various Gd concentrations have been prepared on glass and Si wafer substrates using sol gel technique. The films were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and dc-electrical measurements. XRF method was used to determine the %Gd content in the films while XRD was used to study the influence of Gd doping on the detailed crystalline structure. Experimental data indicate that Gd3+ doping with level of less than 2.4% slightly enlarge the CdO crystalline unit cell. The bandgap (E g) of Gd-doped CdO suffers narrowing by about 13% due to a small (0.2%) doping level but with %Gd doping level larger than 2.4%, E g becomes wider than that of undoped CdO. The electrical behaviours of the Gd-doped CdO films show that they are degenerate semiconductors. The 2% Gd-doped CdO film shows increase in its mobility by about 92%, conductivity by 320%, and carrier concentration by 127%, relative to undoped CdO film. From transparent-conducting-oxide point of view, the Gd doping of CdO by sol gel method is not effective. Finally, the absorption in the NIR spectral region was investigated to be due to the free electrons.  相似文献   

7.
A series of lightly La-doped CdO thin films (1%, 5%, and 7%) have been prepared by a spin coater sol-gel technique on amorphous glass and crystalline Si substrates. Those prepared films were studied by X-ray diffraction (XRD), UV-VIS-NIR absorption spectroscopy, and dc-electrical measurements. The investigation shows that La doping grows slightly the CdO lattice parameter and decreases the intrinsic energygap from 2.1 eV to 1.7 eV. The optical properties were easily explained in the framework of classical Drude theory and thus all the corresponding parameters were determined. The electrical behaviour of the samples shows that they are degenerate semiconductors until the atomic percentage of the La dopant was 7% then the sample was converted into a non-degenerate semiconductor. Generally, it was observed that the conductivity and mobility of the carriers were decreased by increasing the La content in the CdO film samples.  相似文献   

8.
采用基于密度泛函理论的第一性原理平面波超软赝势计算方法,研究了In、Sc p型掺杂对SrTiO_3母体化合物稳定性、电子结构和光学性质的影响.计算结果表明:掺杂后,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3的稳定性降低,体系显示p型简并半导体特征,掺杂仅引起杂质原子近邻区域的几何结构发生变化.同时,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的光学带隙分别展寬0.35、0.30 eV,光学吸收边发生蓝移,在1.25.2.00 eV的能量区间出现新的吸收峰,该吸收峰与体系Drude型自由载流子的激发相关.此外,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的可见光透过率有了明显的提高,在350-625 nm波长范围透过率高于85%.掺杂原子在费米能级处低的电子态密度限制了跃迁概率和光吸收.大的禁带宽度、小的跃迁概率和弱的光吸收是SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系具有较高光学透明度的原因.  相似文献   

9.
The present work deals with the deposition of NiO and Nitrogen (N)-doped NiO thin films by sol-gel spin coating technique. Structural, morphological, linear and non-linear optical characteristics of undoped and N-doped (1–15 wt%) NiO films were studied. From XRD measurements, it is evident that single phase nano crystalline NiO is formed for all doping concentrations. Surface morphology study shows that higher concentration of N doped NiO thin films were of high quality and EDX mapping confirmed the doping of Nitrogen in films. The Raman spectra of the studied films were analyzed over the range of 1400-200 cm−1. The optical studies confirm that as doping increases, transparency of the film decreases (except at 10% N doping) and the band gap narrows. Nonlinear parameters such as refractive index and susceptibilities also depend on N dopant concentration. Z-scan studies viz., absorption index, nonlinear refractive index were carried out on undoped and N doped NiO samples and the results were matched with theoretical calculated values.  相似文献   

10.
Cadmium selenide quantum dots with cubic crystal structure are chemically deposited in thin film form using selenosulfate as a precursor for selenide ions and ammonia buffer with double role: as a ligand and as a pH value controller. The optical band gap energies of as-deposited and thermally treated cadmium selenide thin films, calculated within the framework of parabolic approximation for the dispersion relation, on the basis of equations which arise from the Fermi's golden rule for electronic transitions from valence to conduction band, are 2.08 and 1.77 eV, correspondingly. The blue shift of band gap energy of 0.34 eV for as-deposited thin films with respect to the bulk value is due to the quantum size effects (i.e., nanocrystals behave as quantum dots) and this finding is in agreement with the theoretical predictions. During the thermal treatment the nanocrystals are sintered, the increase of crystal size being in correlation with the decrease of band gap energy. The annealed thin films are practically non-quantized. From the resistance-temperature measurements, on the basis of the dependence of ln(R/Ω) vs 1/T in the region of intrinsic conduction, the thermal band gap energy (at 0 K) of 1.85 eV was calculated.  相似文献   

11.
Thin films of Cu-doped CdO (CdO:Cu) with different Cu% content were prepared in high vacuum on glass and Si substrates. The samples were characterised X-ray diffraction (XRD), optical spectroscopy, scanning electron microscope (SEM), and dc-electrical measurements. The XRD study reveals the formation of single crystalline phase CdO:Cu of CdO structure with a preferential [111] orientation. However, with increasing of Cu% content, the crystal structure was gradually deteriorated. SEM study shows formation of granular structure with rice shape grains of average size ∼500 nm. The optical study shows that Cu doping increased the films transparency with a slight blueshift for the bandgap. The calculated optical constants for pure and Cu-doped CdO were analysed with Forouhi–Bloomer (FB), Wemple–Didomenico (WD), and Spitzer–Fan (SF) models. Good agreements were obtained between electrical and optical (through SF model) measurements. The electrical measurements show that the utmost enhancement in mobility (82.5 cm2/V s) and conductivity (1428.6 S/cm) was found with 2.3% Cu sample. The optoelectronic study was analysed through the available BGW and BGN models that show close theoretical to the experimental results. In general, the films of CdO prepared with light Cu doping have optical and electrical characteristics suitable for various applications in material sciences and optoelectronic devices.  相似文献   

12.
The nitrogen related defect chemistry and electronic structure of wide band gap oxides are investigated by density functional theory defect calculations of N, NH, and as well as and in MgO, CaO, SrO, Al(2)O(3), In(2)O(3), Sc(2)O(3), Y(2)O(3), La(2)O(3), TiO(2), SnO(2), ZrO(2), BaZrO(3), and SrZrO(3). The N acceptor level is found to be deep and the binding energy of NH with respect to and is found to be significantly negative, i.e. binding, in all of the investigated oxides. The defect structure of the oxides was found to be remarkably similar under reducing and nitriding conditions (1 bar N(2), 1 bar H(2) and 1 × 10(-7) bar H(2)O): NH predominates at low temperatures and predominates at higher temperatures (>900 K for most of the oxides). Furthermore, we evaluate how the defect structure is affected by non-equilibrium conditions such as doping and quenching. In terms of electronic structure, is found to introduce isolated N-2p states within the band gap, while the N-2p states of NH are shifted towards, or overlap with the VBM. Finally, we assess the effect of nitrogen incorporation on the proton conducting properties of oxides and comment on their corrosion resistance in nitriding atmospheres in light of the calculated defect structures.  相似文献   

13.
(1S)-(+)-10-Camphorsulfonic acid-doped polydithienylmethine was prepared through an acid-catalyzed condensation reaction of alpha,alpha'-di-2-thienyl-(2,2'-bithiophene)-5,5'-dimethanol and was characterized by 1H NMR spectroscopy and size exclusion chromatography (SEC). The electronic and vibrational properties of the resulting polymer thin films vary with the loadings of the (1S)-(+)-10-camphorsulfonic acid. The dark conductivity and drift mobility, which is significantly high, of the polymer thin films were enhanced with increasing doping levels and reached maximum values of 8.0x10(-5) S.cm-1 and 3.5x10(-2) cm2.V-1.s-1, respectively, at a 7 mol % dopant loading. Higher doping levels (>7 mol %) result in nonuniform polymer thin films with degraded optical quality due to the formation of nanocrystalite and thus a decrease in conductivity and drift mobility was observed. The doped polydithienylmethine thin film also exhibited a photoconductivity response with an excitation at 457 nm and the highest photoconductivity (2x10(-4) S.cm-1) was again observed at the 7 mol % doping level. Spectroscopic investigation suggests that the enhanced transport properties can be attributed to polaronic species present. The electronic and vibrational changes which relate to such doping were characterized by electronic absorption spectroscopy, Raman spectroscopy, and FTIR spectroscopy. The changes in transport values can be directly related to the changes we see in our spectroscopic investigations.  相似文献   

14.
The microstructure, optical, photoluminescence and electrical properties of ZnO based films deposited onto FTO glass substrates by ultrasonic spray pyrolysis have been investigated. For comparison and a better understanding of physical properties of indium- and aluminum-doped ZnO and undoped ZnO thin films, X-ray diffraction analysis, photoluminescence spectra, optical, SEM texture and electrical conductivity analyses were performed. The AZO and IZO films exhibit the nanofiber structure with diameters 260 and 400 nm. X-ray diffraction showed all samples to be polycrystalline with hexagonal ZnO. The optical band gaps of the films were varied by Al and In dopants. The photoluminescence spectra of the films show a weak broad in the visible range and shifted to green emission for indium doping and to the green blue emission for aluminum as dopant. The width of the PL spectra for aluminum-doped films is too large compared to those of the indium-doped ones. The electrical conductivity of the ZnO film changes with Al and In dopants. The position of donor levels changes with In and Al dopants and approaches the conduction band level with the metal dopants. The obtained results suggest that the metal doping has a clear effect upon the growth, optical, photoluminescence and electrical conductivity properties of the ZnO films.  相似文献   

15.
Cadmium Oxide (CdO) thin film is one of the first transparent conducting oxide semiconductors. Its excellent optical and electronic properties have made CdO a promising material for flat panel displays. In this article, we provide a comprehensive review of the state-of-the-art research activities related to the ‘preparation-property-application’ triangle of CdO thin films.  相似文献   

16.
Effect of In, Al and Sn dopants on the optical and structural properties of ZnO thin films have been investigated by X-ray diffraction technique and optical characterization method. X-ray diffraction patterns confirm that the films have polycrystalline nature. The thin films have (002) as the preferred orientation. This (002) preferred orientation is due to the minimal surface energy which the hexagonal structure, c-plane to the ZnO crystallites, corresponds to the densest packed plane. The grain size values of the films are found to be 29.0, 35.2 and 39.5 nm for In, Al and Sn doped ZnO thin films, respectively. The optical band gaps of the films were calculated. The absorption edge shifts to the lower wavelengths with In, Al and Sn dopants. The inclusion of dopant into films expands also width of localized states as E(UIn)>E(UAl)>E(USn). The refractive index dispersion curves obey the single oscillator model. The dispersion parameters and optical constants of the films were determined. These parameters changed with In, Al and Sn dopants.  相似文献   

17.
以钛酸锶钡和稀土氧化物粉末靶为靶材, 用离子束溅射法在MgO(100)和Si(100)基片上组合制备了不同掺杂浓度的Ba0.6Sr0.4TiO3:Re(BST:Re)薄膜样品阵列. 沉积得到的多层无定形薄膜经低温扩散、高温晶化, 形成BST:Re多晶薄膜. 以扫描近场微波显微镜测定BST:Re/MgO(Re=Er, Eu, Pr/Al)样品的介电常数, 研究掺杂种类及掺杂浓度对BST薄膜介电常数的影响. 结果表明, 稀土离子的适量掺杂使BST薄膜介电常数有所提高, 其中, Er3+和Eu3+的最佳掺杂浓度分别为4.5%及5.7%(原子分数) 左右时, 介电常数值达到最高. 而共掺杂Pr3+和Al3+的样品则在n(AL):n(Pr)为4-8之间介电性能最佳. 另外, 测量了BST:Re/Si(Re=Er, Eu)样品的光致发光谱, 发现Er3+和Eu3+在BST薄膜样品中的发光猝灭浓度分别为4.20%和8.95%(原子分数).  相似文献   

18.
The thin film of N-doped ZnO/CNT nanocomposite was successfully fabricated on soda lime glass substrate by a simple sol-gel drop-coating method. The structural, morphological, chemical, and optical properties of as prepared samples were characterized by a variety of tools such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The hexagonal crystalline structure was confirmed from XRD measurement without any other impurity phase detection in samples. The N-doped ZnO/CNT composite showed excellent photo-catalytic activity towards cationic methylene blue (MB) dye degradation with 100% removal rate under UV light irradiation as compared to N-doped ZnO (65%) and pure ZnO (47.36%). The convincing performance has also been observed for the case of visible light irradiation. The enhancement of that photocatalytic activity might be due to narrowing the band gap as well as the reduction of electron–hole pair recombination in ZnO matrix with the incorporation of dopant nitrogen and CNT. It is assumed from the obtained results that N-doped ZnO/CNT nanocomposite thin film can be employed as an economically achievable and ecofriendly method to degrade dye with UV and visible light irradiation. Additionally, density functional theory (DFT) calculations were applied to explore the effect of N-doping on electronic structure of ZnO. The computational study has supported the experimental results of significant band gap contraction, which leads to the maximum absorption towards higher wavelength and no appreciable change of lattice parameters after doping. A conceivable photocatalytic mechanism of N-doped ZnO/CNT nanocomposite has been proposed as well.  相似文献   

19.
A novel and simple chemical method was developed for the deposition of ZnO films from aqueous solution, integrating the merits of successive ionic layer adsorption and reaction with the chemical bath deposition technology. By this new method, dense and continuous ZnO thin films with good crystallinity can be prepared in a very short time, e.g., in about 20 min. Results show that as-deposited ZnO films on glass and Si (1 0 0) exhibit hexagonal wurtzite crystalline structure and the preferential orientation along (0 0 2) plane. With a dense and continuous appearance, the film is composed of ZnO particles in even size of 200-300 nm. The strong and sharp emission at 391 nm and several weak emissions at the wavelength band of 440-500 nm indicate the high optical quality and the stoichiometrical nature of obtained film. Mechanism analysis shows that the reaction duration in hot water and the drying process are vital important factors affecting the deposition process and the crystallization behavior of the film prepared via the aqueous solution route.  相似文献   

20.
In this study, Ga‐doped ZnO thin films were prepared using sol–gel technique via spin‐coating method. The effect of Ga‐doping dopant (0, 1, 2 and 3 at.%) on microstructural, optical, electrical and photoelectrochemical (PEC) characteristics have been investigated. The spin‐coating was repeated six times, and as‐obtained thin films were then annealed at 500 °C for 1 h in vacuum. After annealing, all samples revealed single phase of hexagonal ZnO polycrystalline structure with a main peak of (002) in X‐ray diffraction (XRD) pattern. Raman spectra show that the vibration strength of E2 is highly decreased by Ga doping. Thicknesses of all samples were ~300 nm measured via scanning electron microscopy (SEM) cross‐section images and alpha‐step. The optical band gap and resistivity of samples were in the range of 3.24 to 3.28 eV and 102 to 9 Ohm cm, respectively. Resulting from PEC response, the 2 at.% Ga‐doped ZnO thin film has a better PEC performance with photocurrent density of ~0.14 mA/cm2 at 0.5 V versus saturated calomel electrode (SCE) under illumination with the intensity of 100 mW/cm2. This value was about seven times higher than the un‐doped film (reference sample). Observed higher photocurrent density was likely because of a suitable Ga‐doping concentration causing a lower resistivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号