首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fully automated method using direct immersion solid-phase microextraction (DI-SPME) and headspace on-fiber silylation for simultaneous determinations of exogenous endocrine-disrupting chemicals (EDCs) and endogenous steroid hormones in environmental aqueous and biological samples by gas chromatography–mass spectrometry (GC-MS) was developed and compared to a previously reported manual method. Three EDCs and five endocrine steroid hormones were selected to evaluate this method. The extraction and derivatization time, ion strength, pH, incubation temperature, sample volume, and extraction solvent were optimized. Satisfactory results in pure water were obtained in terms of linearity of calibration curve (R 2=0.9932–1.0000), dynamic range (3 orders of magnitude), precision (4–9% RSD), as well as LOD (0.001–0.124 μg L−1) and LOQ (0.004–0.413 μg L−1), respectively. These results were similar to those obtained using a manual method, and moreover, the precision was improved. This new automated method has been applied to the determinations of target compounds in real samples used in our previous study on a manual SPME method. Exogenous octylphenol (OP), technical grade nonylphenol (t-NP), and diethylstilbestrol (DES) were at 0.13, 5.03, and 0.02 μg L−1 in river water and 3.76, 13.25, and 0.10 μg L−1 in fish serum, respectively. Natural steroid hormones estrone (E1), 17β-estradiol (E2), and testosterone (T) were at 0.19, 0.11, and 6.22 μg L−1 in river water; and in female fish serum E1, E2, and pregnenolone (PREG) were at 1.37, 1.95, and 6.25 μg L−1, respectively. These results were confirmed by the manual method. The developed fully automated SPME and on-fiber silylation procedures showed satisfactory applications in environmental analysis and the performances show improved precision and a reduced analysis time compared to the manual method.  相似文献   

2.
A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography–triple-quadrupole (tandem) mass spectrometry (LC–MS–MS). By extraction of 1-L water samples and concentration of the extract to 100 μL, method detection limits (MDLs) as low as 0.05–0.1 ng L−1 were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L−1), the herbicides terbutylazine (7 ng L−1), atrazine (5 ng L−1), simazine (16 ng L−1), diuron (11 ng L−1), and atrazine-desethyl (11 ng L−1), the pharmaceuticals carbamazepine (9 ng L−1), sulfamethoxazole (10 ng L−1), gemfibrozil (1.7 ng L−1), and benzafibrate (1.2 ng L−1), the surfactant metabolite nonylphenol (15 ng L−1), its carboxylates (NPE1C 120 ng L−1, NPE2C 7 ng L−1, NPE3C 15 ng L−1) and ethoxylates (NPE n Os, n = 3-17; 300 ng L−1), perfluorinated surfactants (PFOS 9 ng L−1, PFOA 3 ng L−1), and estrone (0.4 ng L−1). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local waterworks.  相似文献   

3.
P. Popp  A. Paschke 《Chromatographia》1997,46(7-8):419-424
Summary A new 80 μm Carboxen-polydimethylsiloxane (PDMS) fiber for solid phase microextraction (SPME) was tested for the enrichment of volatile organic compounds from water and air. Detection limits between 13 ng L−1 (CH2Cl2) and 0.1 ng L−1 (CHCl2Br and CHClBr2) for the combination: Carboxen-PDMS fiber and GC-ECD and between 35 ng L−1 and 45 ng L−1 (BTEX compounds) for the combination: Carboxen-PDMS and GC-FID using the headspace procedure were determined. Comparisons with the 100 μm PDMS fiber and further coatings show the advantages of the Carboxen-PDMS fiber with respect to extraction efficiency. Disadvantages of the new fiber compared with the 100 μm PDMS fiber are poorer repeatability and prolongation of equilibrium time. Distribution coefficients of the BTEX compounds between aqueous solution and SPME fiber coating were calculated and compared with the results of other researchers and with octanol-water partition coefficients.  相似文献   

4.
A novel, sensitive, and specific competitive fluorescence immunoassay has been developed for the quantitative determination of dibutyl phthalate (DBP) using an antibody-coated plate format. Hapten was synthesized in order to produce polyclonal antibodies against dibutyl phthalate. Polyclonal antisera to dibutyl phthalate were generated in rabbits and used to construct the fluorescence immunoassay for measurement of dibutylphthalate. The assay had a detection limit of about 0.02 μg L−1, a dynamic range of approximately 0.1–300 μg L−1. Other similar phthalate compounds do not interfere significantly in the analysis using this immunoassay technique, and the cross-reactivity rates were less than 10%. The study demonstrated that the developed antiserum and fluorescence immunoassay procedure can be used to detect dibutyl phthalate in environmental samples such as tap water, river water, drinking water, and leachate from plastic drinking water bottles.  相似文献   

5.
Although there is increasing concern about residues from personal care products entering the aquatic environment and their potential to accumulate to levels that pose a health threat to humans and wildlife, we still know little about the extent and magnitude of their presence in the aquatic environment. In this study we describe a procedure for isolation, and subsequent determination, of compounds commonly added to personal care products. The compounds of interest include UV filters with the commercial name Eusolex (homosalate, 4-methylbenzylidenecamphor, benzophenone-3, octocrylene, butylmethoxydibenzoylmethane, ethylhexyl methoxycinnamate) and two common anti-microbial agents, clorophene and triclosan. Water samples were filtered, acidified, and extracted by use of solid-phase extraction. Extracted compounds were then derivatised before analysis by gas chromatography–mass spectroscopy. By use of our method we obtained limits of detection of 13–266 ng L−1 for UV filters, and 10–186 ng L−1 for triclosan and clorophene. Recoveries were 82–98% for deionised water and 50–98% for natural water (seawater, pool water, lake water, and river water). Samples collected in Slovenia included seventeen recreational waters (seawater, pool water, lake water, and river water; August 2004) and four wastewaters (January 2005). The most abundant UV filter was benzophenone-3 (11–400 ng L−1). Of the two anti-microbial agents studied, trace amounts, only, of triclosan were present in the river Kolpa (68 ng L−1) and in an hospital effluent (122 ng L−1).  相似文献   

6.
This paper describes the development and validation of a GC-MS method which allows the simultaneous quantification of 11 endocrine disrupting compounds (EDCs) in surface water samples from both estuary and sea. The analysed EDCs are oestrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-tert-octylphenol, 4-n-octylphenol, 4-nonylphenol, bisphenol A and finally, mono and diethoxylates of 4-nonylphenol and 4-octylphenol. The method includes the pre-concentration of water samples, 1000-fold factor, in OASIS HLB cartridges by solid phase extraction, the derivatisation of all EDCs by N,O-bis(trimethylsilyl)trifluoroacetamide added with 1% trimethylchlorosilane and pyridine (at 65°C for 30?min) and, finally the stabilisation of the EDCs-silylated derivatives, in hexane, for 72?h. The validation parameters revealed that this method was highly specific for all target compounds using real samples. The linearity of the calibration curves (r 2) showed correlation factors higher than 0.990. The detection limits ranged from 0.10 to 1.45?ng?L?1, depending on each analysed compound, and recoveries were satisfactory for most of the assayed EDCs (>60%). Analysis of samples from four polluted areas of Douro River estuary and from two points of the Atlantic Ocean (Portugal) showed high amounts of E1 (up to 1.96?ng?L?1), E2 (up to 14.36?ng?L?1) and EE2 (up to 2.76?ng?L?1).  相似文献   

7.
Volatile chemical compounds responsible for the aroma of wine are derived from a number of different biochemical and chemical pathways. These chemical compounds are formed during grape berry metabolism, crushing of the berries, fermentation processes (i.e. yeast and malolactic bacteria) and also from the ageing and storage of wine. Not surprisingly, there are a large number of chemical classes of compounds found in wine which are present at varying concentrations (ng L−1 to mg L−1), exhibit differing potencies, and have a broad range of volatilities and boiling points. The aim of this work was to investigate the potential use of near infrared (NIR) spectroscopy combined with chemometrics as a rapid and low-cost technique to measure volatile compounds in Riesling wines. Samples of commercial Riesling wine were analyzed using an NIR instrument and volatile compounds by gas chromatography (GC) coupled with selected ion monitoring mass spectrometry. Correlation between the NIR and GC data were developed using partial least-squares (PLS) regression with full cross validation (leave one out). Coefficients of determination in cross validation (R 2) and the standard error in cross validation (SECV) were 0.74 (SECV: 313.6 μg L−1) for esters, 0.90 (SECV: 20.9 μg L−1) for monoterpenes and 0.80 (SECV: 1658 μg L−1) for short-chain fatty acids. This study has shown that volatile chemical compounds present in wine can be measured by NIR spectroscopy. Further development with larger data sets will be required to test the predictive ability of the NIR calibration models developed.  相似文献   

8.
In order to survey the influence of estrogenic compounds on cyanobacteria, solid-phase microextraction (SPME) with a carbowax-divinylbenzene fibre was used for the determination of tert-octylphenol (tert-OP), n-nonylphenol (n-NP), technical nonylphenol (tech-NP) and bisphenol A (BPA) in cyanobacteria culture media by gas chromatography with flame ionization detection. Determinations were carried out without derivatization in deionized water and filtered culture media. A comparison between f2 and Fraquil culture media was performed, which showed that only f2 allowed quantitative recoveries. Headspace SPME with salting out, requiring only 10 mL of sample, was suitable for tert-OP, n-NP, and tech-NP determination with limits of detection (LOD) of <0.05 μg L−1. For BPA, direct immersion SPME could provide a LOD of 1 μg L−1. Automated sampling allowed reproducible extraction. No exudate substances overlapped with the studied compounds during the chromatographic separation and no matrix effects were observed. Ecotoxicity tests can be performed by single spiking of tert-OP and tech-NP and multiple spiking of n-NP due to its lower stability.  相似文献   

9.
An optimisation of derivatisation methods for the simultaneous determination of endocrine disrupting chemicals (EDCs) in water by solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) was developed in this study. Seven highly potent EDCs including 17β-estradiol (E2), estrone (E1), 16α-hydroxyestrone, 17α-ethynylestradiol (EE2), bisphenol A, 4-nonylphenol and 4-tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was used for the extraction recoveries of compounds from water and effluent samples. The stability of the silylation derivatives under different reaction conditions was investigated. The combined use of BSTFA and pyridine as derivatisation reagents, together with the use of hexane as the final solvent, was preferred in order to generate more stable derivatives of EDCs. The relative response factor (RRF) of all derivatives except that of EE2 was stable 120 h after derivatisation. The addition of pyridine as derivatisation reagent with BSTFA can prevent the conversion of EE2 to other products during the reaction. Several parameters that may affect the recovery of EDCs, such as the SPE flow rate, and water properties including aquatic colloid content and surfactant concentration were tested. The results showed that the flow rate (1-25 mL min−1), colloid concentration (0-50 mg L−1) and surfactants concentration (0-10 μg L−1) did not cause significant decrease in the EDCs recovery.  相似文献   

10.
Summary A simple and sensitive method for the determination of trace amounts of bisphenol-A (BPA), bisphenol-A diglycidyl dimethacrylate (bis-GMA), bisphenol-A dimethacrylate (bis-DMA) and triethyleneglycol dimethacrylate (TEGDMA) in human saliva is proposed. These materials are used in dental restorations, as composites and sealants, and are sometimes detected in human saliva after dental treatment. The proposed method involves protein precipitation using acetonitrile followed by acidification, evaporation of the solvent and dissolution with dichloromethane prior to injection into a GC-MS. Thermal derivatization in the injection system was used for the identification and quantification of bis-GMA. Clean-up is not necessary using SIM mode. Bisphenol-F (BPF) was used as internal standard. The linear range was 15 to 1000 μg·L−1 for BPA, 50 to 10 000 μg·L−1 for bis-GMA, 50 to 1000 μg·L−1 for bis-DMA and 1 to 100 μg·L−1 for TEGDMA. The detection limits were 3,15,10 and 0.3 μg·L−1 for BPA, bis-GMA, bis-DMA and TEGD-MA, respectively. Validation of the proposed method was carried out by using the standard addition methodology. Samples of 10 mL of human saliva collected 1 h after dental treatment were analysed in order to assess the applicability of the method to detect and quantify such compounds originated from methacrylic resins used in odontological treatment.  相似文献   

11.
A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP–DRC–MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as 31P16O+ using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L−1 for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC–ICP–MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L−1 glyphosate and 2.8 μg L−1 AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5–2 μg L−1 and 4–14 μg L−1 for glyphosate and AMPA, respectively.  相似文献   

12.
Summary ‘Free’ steroidal estrogens have been identified as compounds possibly responsible for endocrine-disruption of aquatic fauna populating rivers in which municipal sewage-treatment plants (STP) discharge their effluents. Natural and synthetic estrogens are excreted, as glucuronides and sulfates, by man, in the urine but these are bioconverted back to the unconjugated forms in wastewater discharges. For this reason we have developed a sensitive analytical procedure, without derivatization, for identification and quantitation of conjugated and free estrogens in surface and waste waters. The hormones were extracted and fractionated, by use of Carbograph cartridges, into neutral and acid fractions which were then analyzed by liquid chromatography-tandem mass spectrometry. Recoveries were between 66 and 100% and limits of detection (LOD) between 15.0 and 0.003 ng L−1, depending on the compound and the water matrix. When this methodology was applied to real sewage and river water we could measure the main free estrogens at ng L−1 levels. Among the conjugates we always observed the presence of estrone 3-sulfate (at levels between 8.0 and 0.5 ng L−1).  相似文献   

13.
Summary A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC systems to enable the determination of microcontaminants at the 0.02–1 μg L−1 level in 7–50 mL of aqueous sample. The screening was limited to compounds present in at least one heteroatom-selective GC-AED trace above a predetermined concentration level. These compounds were identified by their partial formulae (AED) and the corresponding mass spectra, which were obtained from the GC-MS chromatogram via the retention index concept. The potential of the approach was demonstrated by the identification of target compounds as well as all unknowns present in tap and waste water above the predetermined threshold of 0.05 μg L−1 (tap water) or 0.5 μg L−1 (waste water).  相似文献   

14.
Summary The eleven Environmental Protection Agency (EPA) priority phenolic compounds have been determined by solid-phase extraction (SPE) coupled on-line to supercritical-fluid chromatography (SFC) with diodearray detection. The variables affecting chromatographic separation were optimized and the analytes were separated at 40 °C in two diol columns connected in series; a gradient of methanol, as modifier, and CO2 was used as mobile phase. Under these conditions, all the compounds studied were separated to baseline in less than 13 min. PLRP-S and LiChrolut EN were tested as sorbents in a 10×3 mm i.d. laboratory-packed precolumn for solid-phase extraction. An ion-pair reagent, tetrabutylammonium bromide (TBA), was used in the extraction process to increase break-through volumes. The performance of the method was checked with tap and river waters and the pre-concentration of 20 mL of sample in a PLRP-S pre-column enabled phenolic compounds to be determined at low μg L−1 levels with limits of detection ranging between 0.4 and 2 μg L−1. The repeatability and reproducibility between days (n=3) for real samples spiked at 10 μg L−1 were lower than 10%.  相似文献   

15.
The sensitivity and precision of headspace solid-phase micro extraction (HS-SPME) at an analyte solution temperature (T as) of +35 °C and a fiber temperature (T fiber) of +5 °C were compared with those for HS-SPME at T as and T fiber of −20 °C for analysis of the volatile organic compounds benzene, 1,1,1-trichloroethane, trichloroethylene, toluene, o-xylene, ethylbenzene, m/p-xylene, and tetrachloroethylene in water samples. The effect of simultaneous fiber cooling and analyte solution freezing during extraction was studied. The compounds are of different hydrophobicity, with octanol/water partition coefficients (Kow) ranging from 126 and 2511. During a first set of experiments the polydimethylsiloxane (PDMS) SPME fiber was cooled to +5 °C with simultaneous heating of the aqueous analyte solution to +35 °C. During a second set of experiments, both SPME fiber holder and samples were placed in a deep freezer maintained at −20 °C for a total extraction time of 30 min. After approximately 2 min the analyte solution in the vial began to freeze from the side inwards and from the bottom upwards. After approximately 30 min the solution was completely frozen. Analysis of VOC was performed by coupling HS-SPME to gas chromatography-mass spectrometry (GC-MS). In general, i.e. except for tetrachloroethylene, the sensitivity of HS-SPME increased with increasing compound hydrophobicity at both analyte solution and fiber temperatures. At T as of +35 °C and T fiber of +5 °C detection limits of HS-SPME were 0.5 μg L−1 for benzene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, 0.125 μg L−1 for toluene, and 0.025 μg L−1 for ethylbenzene, m/p-xylene, and o-xylene. In the experiments with T as and T fiber of −20 °C, detection limits were reduced for compounds of low hydrophobicity (Kow<501), for example benzene, toluene, 1,1,1-trichloroethane, and trichloroethylene. In the concentration range 0.5–62.5 μg L−1, the sensitivity of HS-SPME was enhanced by a factor of approximately two for all compounds by performing the extraction at −20 °C. A possible explanation is that freezing of the water sample results in higher concentration of the target compounds in the residual liquid phase and gas phase (freezing-out), combined with enhanced adsorption of the compounds by the cooled fiber. The precision of HS-SPME, expressed as the relative standard deviation and the linearity of the regression lines, is increased for more hydrophobic compounds (Kow>501) by simultaneous direct fiber cooling and freezing of analyte solution. Background contamination during analysis is reduced significantly by avoiding the use of organic solvents.  相似文献   

16.
Summary Two procedures, based on large-volume injection with a programmed-temperature vaporizer (PTV), have been developed for the determination of several triazine and organophosphorus pesticides. The use of PTV for injection in gas chromatography (GC) has enabled the introduction of up to 200 μL sample extract into the GC, thus increasing the sensitivity of the method. PTV injection has been combined off-line with two different microextraction procedures—liquid-liquid partition and solid-phase extraction. A simple and rapid off-line liquid-liquid microextraction procedure (5 mL water/1 mL methyltert-butyl ether) was applied to surface water samples spiked at levels between 0.01 and 5μg L−1. Recoveries of the overall procedure were >80% and the precision was better than 15%. Detection limits were <30 ngL−1 from 200-μL injections in GC-NPD analysis of triazines and GC-FPD analysis of organophosphorus pesticides. Off-line automated solid-phase extraction with C18 cartridges has been applied to water samples (50 mL) spiked at 0.01, 0.1 and 1 μg L−1. The overall procedure was satisfactory (recoveries >80% and coefficients of variation <12%) and the limits of detection ranged from 1 to 9 ng L−1. Finally, several surface water samples were anlysed, and triazine herbicides were detected at concentrations of approx. 0.1–0.2 μg L−1. The results were similar to those obtained by conventional solvent extraction then GC-MSD after splitless injection of 2 μL.  相似文献   

17.
Summary The eleven priority, EPA phenolic pollutants were determined by liquid chromatography followed by two detectors in series; UV and electrochemical. Three different adsorbents, Envi-Carb (a carbon black) and two functionalized polymeric resins, Bond Elut PPL and another synthesized in our laboratory with an ocarboxybenzoyl moiety, were compared for solid-phase extraction (SPE) to detect lower concentrations of the eleven phenolics in natural waters. Higher recoveries were obtained using the functionalized polymeric adsorbents compared with Envi-Carb. When real samples were analysed, the synthetic adsorbent gave lower interference than Bond Elut PPL and phenol was determined at low levels with no humic and fulvic acid inter-ference when Na2SO3 was added. The linearity range for most compounds in tap water was 0.05–20 μg L−1 and the limits of detection were <35 ng L−1. Repeatability and reproducibility between days for real samples spiked at 0.1 μg L−1, expressed as relative standard deviation, were <8% and 10%, respectively.  相似文献   

18.
A standard GC-MS instrument with electron impact ionisation has been used to develop a fast, simple and reliable method for the simultaneous determination of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) in water samples. Isotope dilution analysis (IDA) is used for the determination of species, taking advantage of a commercially available spike solution containing a mixture of MBT, DBT and TBT enriched in 119Sn. Method detection limits for 100-mL samples were between 0.18 and 0.25 ng L−1 for the three butyltin compounds with typical RSD between 2 and 4% at levels between 100 and 10 ng L−1, respectively. Recovery of tin species in spiked samples (natural water, wastewater and seawater) was quantitative. The stability of butyltin compounds in collected seawater samples was also studied. The addition of a 1% (v/v) glacial acetic acid preserved tin species in the samples for at least 5 days at room temperature. The IDA method was finally implemented in a routine testing laboratory and it was subsequently accredited by the Spanish National Accreditation Body according to the requirements of UNE-EN ISO/IEC 17025.  相似文献   

19.
Two alternatives for the rapid simultaneous quantification of six sulfonylurea herbicides and five of their main degradation products in natural water are proposed. For concentration, the compounds were extracted on a polystyrene–divinylbenzene solid phase under pH and elution conditions that suppressed any hydrolysis. The eluates were analysed by liquid chromatography coupled to electrospray tandem mass spectrometry within 20 min. The whole method was validated and shown to give no hydrolysis artefacts. The application of off-line and on-line SPE of sulfonylureas enabled the 0.1 μg L−1 and 1 ng L−1 LOQ levels to be reached, respectively. The on-line SPE–LC–MS–MS method allowed the accurate quantitation of all sulfonylureas and three degradation products at 0.1 μg L−1 or below in natural water, with an average repeatability of 8%.  相似文献   

20.
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 μm PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L−1 in water and close to ng (Sn) kg−1 in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME–GC–PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号