共查询到16条相似文献,搜索用时 140 毫秒
1.
以GaAs/Ga1-xAlxAs为例,在有效质量的近似下,讨论了双抛量了阱吕类氢杂质的结合能,结果表明:(1)双方量子阱中类氢杂质的结合能是双抛阱中杂质结合能的1.3倍;(2)无论杂质在阱中还是垒中,不仅垒宽和阱宽影响其结合能,而且Al的掺杂度x也是影响结合能的一个重要因素。 相似文献
2.
3.
本文在弱场极限下应用微扰变分法,在强场极限下应用绝热微扰法,计算了位于,量子阱中心的一个类氢杂质在磁场中基态的束缚能和电子跃迁能量。结果表明:电子的基态束缚能随磁场的增加或量子阱宽的减小而增大;电子跃迁能量随量子阱宽的减小而变大;在强场极限和弱场极限下,电子跃迁能量随磁场变化的规律不同。在强场极限下,电子跃迁能随磁场的增加变大。在弱场极限下,当电子初态有横向激发,末态是基态时,跃迁能量随磁场的增加变大;当电子初态只有纵向激发,末态有横向激发时,跃迁能量随磁场的增加变小,当电子初态与末态横向激发的程度相同时,跃迁能量不随磁场变化。 相似文献
4.
在有效质量近似下,利用变分方法研究了像势对量子阱中类氢杂质结合能的影响。计算中考虑到了阱和垒中电子有效质量的不同。数值计算结果表明:阱和垒中质量的不连续只对阱宽较窄的区域有影响,而像势则在整个区域都有影响.对于阱和垒中介电常数之比较大和阱宽较小的量子阱,考虑像势对阱中杂质结合能的修正是非常必要的 相似文献
5.
6.
采用无限深势阱模型,变分法计算了磁场对截面为方形的一维量子阱线中类氢杂质基态束缚能的影响,同时还讨论了施主离子位置的变化对束缚能的影响。计算结果表明外加磁场使得体吵缚能增加,杂质离子位于阱中心时,束缚能最大,位于正方形的某个角点时,束缚能最小。 相似文献
7.
磁场对正方体量子点中类氢杂质束缚能的影响 总被引:4,自引:0,他引:4
利用有效质量近似,计算了磁场影响下正方体量子点中类氢杂质体系的束缚能,与相同条件下量子线以及球形量子点的束缚能进行了比较,得出合理的结果;并对其物理意义进行了分析。 相似文献
8.
由于量子阱中的浅施主杂质的研究对杂质能级的性质以及量子阱本身性质的研究都提供了有用的信息,因而近来对极性半导体量子阱中的极化子(不仅是自由极化子而且也对束缚极化子)的行为的研究受到人们的重视.不过以前人们将注意力仅仅放在类氢施主杂质上[1,2].显然考虑类氦施主杂质无论从理论上或是从应用上都是必须的. 相似文献
9.
运用三参数变分法,研究了在垂直于生长方向的磁场作用下抛物量子阱中类氢杂质态的束缚能和1s→2p-态跃迁能.结果表明,束缚能和跃迁能随阱宽变化有一极大值;束缚能随磁场单调增加,而跃迁能随磁场的变化出现了极小值. 相似文献
10.
用Peker-Landau变分法计算了含类氢杂质的量子点基态能,发现外磁场、量子点固有禁闭势、电子杂质相互作用、电声子相互作用对量子点基态能都有影响,并有一定相互关系 相似文献
11.
利用一维有限差分法,计算了一个圆柱形量子点中杂质基态的结合能,研究了电场、磁场和杂质位置对结合能的影响.当杂质位于量子点中心时,结合能随着电场和有效半径的增加而减小;当杂质位于过量子点中心且垂直于轴线的平面上时,结合能随杂质位置远离中心的变化呈对称变化;当杂质位于z轴上时,在电场的作用下这种对称性消失. 相似文献
12.
在有效质量近似下,运用变分法计算了闪锌矿GaN/AIGaN耦合量子点中类氢杂质的施主束缚能.数值结果显示了类氢杂质的施主束缚能很大程度依赖于杂质位置和耦合量子点结构参数,当杂质位于量子点中心时,施主束缚能最大,而且随着中间垒宽的增加,杂质束缚能保持着先增加,然后不变的趋势. 相似文献
13.
在有效质量近似下,利用微扰-变分法研究了GaN球形量子点中类氢杂质态的二次斯塔克效应.计算了杂质态结合能随量子点半径和外加电场强度的变化关系.数值结果表明,随量子点尺寸和外加电场强度的增加,基态能和结合能均单调降低.此外,随着量子点半径的增大,斯塔克效应变得越来越明显.结果还表明在同一外电场下,球形量子点中杂质态的斯塔克能移较无杂质时导带电子的斯塔克能移小. 相似文献
14.
本文用改进的Lee-Low-Pines变分法研究了界面光学声子,局域体光学声子以及半无限体光学声子对有限深量子阱中极化子束能的影响,得到了电子束缚态能量和极化子束缚能的解析表达式。 相似文献
15.
华文玉 《南京理工大学学报(自然科学版)》1990,(4)
提出ρ和(Ze—Z_h)耦合试探波函数,计算了 GaAs/Ga_(I-x)Al_xAs量子阱中基态激子的结合能随阱宽和阱深的变化关系,并对所得结果进行了讨论。 相似文献
16.
利用有效质量方法和变分原理,考虑内建电场效应和量子点(QD)的三维约束效应,研究类氢杂质对GaN/AlxGa1-xN量子点中激子态的影响.结果表明:量子点中心的类氢杂质使激子的结合能升高,基态能降低,QD系统的稳定性增强,发光波长红移.杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定.随着杂质从量子点的上界面沿着Z轴移至下界面,激子基态能增大,结合能减小,带间发光蓝移. 相似文献