首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The NMR study on the interaction of Pt(II) with Amadori compounds is performed. The Amadori compounds are derived from the reaction of β-d-glucose with l-cystine leading to N,N′-di-(1-deoxy-β-fructos-1-yl)-l-cystine [FruCyscys], and with l-methionine leading to N-(1-deoxy-β-fructos-1-yl)-l-methionine [FruMet].  相似文献   

3.
PMR and absorption spectra have been used to establish the structure of Ni(II)-glutathione complexes in aqueous solutions at various pH values. Equilibria exist between a few octahedral and square planar complexes in solution. At pH above 11 the most stable complex is formed by the coordination of the Ni(II) ion to the residue. Ni(II) is bound to the sulphur atom and deprotonated nitrogens of the peptide A linkage form the square planar complex.  相似文献   

4.
In order to reveal more information about the toxicity caused by metals and furthermore their influence to the physiological metabolism of the cell, the hexapeptide model Ac-ThrTyrThrGluHisAla-am representing the C-terminal 71-76 fragment of histone H4 which lies into the nucleosome core, was synthesized. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked hexapeptide, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5 and pH 7 for Cu(II) and Ni(II) ions respectively. In basic solutions a major square-planar 4 N Ni(II)-complex, adopting a {N(Im), 3N(-)} coordination mode, was formed. In the case of Cu(II) ions, a 3 N complex, involving the imidazole nitrogen of histidine and two deprotonated amide nitrogens of the backbone of the peptide, at pH 7 and a series of 4 N complexes starting at pH 6.5, were suggested. In addition Ni(II)-mediated hydrolysis of the peptide bond-Tyr-Thr was evident following our experimental data.  相似文献   

5.
Herein, we describe the C4-ethoxylation of 2,4-dichloroquinoline to prepare 2-chloro-4-ethoxy-quinoline ( 3 ), which is a prominent intermediate used for the synthesis of 2-substituted quinolones. To achieve this goal, we studied different conditions for the reaction between 2,4-dichloroquinoline and sodium ethoxide. We discovered that the use of 18-crown-6 ether as an additive and dimethylformamide as the reaction solvent allowed us to obtain the desired product 3 in very good yield and selectivity. In addition, a definitive distinction between the C2 and C4 ethoxylation products was achieved using 1H15N heteronuclear multiple bond correlation. Compound 3 is an intermediate used for the synthesis of 2-((3-aminopropyl)amino)quinolin-4(1H)-one, which displays peculiar behavior during 1H nuclear magnetic resonance analysis, such as the broadening of the H8 singlet and unexpected deuteration at the C8-position. Effort has been dedicated to understand these findings.  相似文献   

6.
Summary Unambiguous1H and13C NMR assignments for 4(3H)-quinazolinones1–6 and their corresponding 4-thiones7–12 have been made. This resulted in the revision of the previous assignments for the two benzenoid carbons (C-5 and C-8) of quinazolinones1,2,4, and5. Thionation of the nucleophilic amides1–6 has been found to cause a distinct change in the13C chemical shift of particularly C-4, but also of those of C-4a, C-5, and C-8a. One-bond and several long range heteronuclear coupling constants for the compounds have also been measured.
Kernresonanzspektroskopie von 4(3H)-Chinazolinonen und 4(3H)-Chinazolinthionen
Zusammenfassung Die1H- und13C-NMR-Spektren der 4(3H)-Chinazolinone1–6 und ihrer entsprechenden 4-Thione7–12 wurden zugeordnet. Dabei zeigte sich, daß eine frühere Zuordnung der beiden benzoiden Kohlenstoffe (C-5 und C-8) der Chinazolinone1,2,4 und5 falsch war. Ersatz des Sauerstoffs durch Schwefel in den nukleophilen Amiden1–6 führt insbesondere für C-4, aber auch für C-4a, C-5 und C-8a zu einer deutlichen Änderung der chemischen Verschiebung. Heteronukleare Kopplungskonstanten über eine und über mehrere Bindungen wurden bestimmt.
  相似文献   

7.
Xue Z  Daran JC  Champouret Y  Poli R 《Inorganic chemistry》2011,50(22):11543-11551
We report here a thorough (1)H NMR study of Fe(acac)(2) solutions in a wide variety of noncoordinating and coordinating solvents, as well as the interaction of this complex with Et(3)N, pyridine, PMe(2)Ph, and R(2)PCH(2)CH(2)PR(2) [R = Ph (dppe), Et (depe)] in C(6)D(6). The study reveals that Fe(acac)(2) is readily transformed into Fe(acac)(3) in solution under aerobic conditions and that the commercial compound is usually contaminated by significant amounts of Fe(acac)(3). The (1)H NMR resonances of Fe(acac)(2) are rather solvent-dependent and quite different than those reported in the literature. The compound is unstable in CDCl(3) and stable in CD(2)Cl(2), C(6)D(6), CD(3)CN, acetone-d(6), DMSO-d(6), THF-d(8), and CD(3)OD. The addition of the above-mentioned ligands (L) reveals only one paramagnetically shifted band for each type of acac and L proton, the position of which varies with the L/Fe ratio, consistent with rapid ligand exchange equilibria on the NMR time scale. A fit of the NMR data at a high L/Fe ratio allows the calculation of the expected resonances for all protons in the Fe(acac)(2)L(2) molecules. The system with the bidentate depe ligand shows evidence for a slow ligand exchange at low depe/Fe ratios, proposed to involve a species with the cis-chelated mononuclear Fe(acac)(2)(depe) structure, whereas the fast exchange at a higher ratio is proposed to involved a trans-Fe(acac)(2)(κ(1)-depe)(2) complex. Complex Fe(acac)(2)(dppe) cannot be investigated in solution because of low solubility in a noncoordinating solvent and because of the poor dppe competition for binding in coordinating solvents. The compound was crystallized, and its X-ray structure reveals a 1-dimensional polymeric structure with dppe-bridged Fe centers having the trans-octahedral Fe(acac)(2)(κ(1)-dppe)(2) coordination environment.  相似文献   

8.
High-field, heteronuclear NMR spectroscopy of biological macromolecules in native cellular environments is limited by the low concentrations present and the long data acquisition times needed for the experiments. Successful 1D and 2D heteronuclear NMR data have been reported, but the 3D experiments conventionally used for protein assignment and detailed characterization are generally too long to maintain cell viability. Here we describe the successful in vivo implementation of a suite of fast 3D NMR experiments which we have used to generate the complete backbone assignment of resonances in the recombinant polypeptide GB-1 within Escherichia coli cells. The data were acquired at 600 MHz with a cold probe using the projection reconstruction experiments, (3,2)HNCA, (3,2)HNCO, and (3,2)HA(CA)NH.  相似文献   

9.
The iron(III) 2,7,12,17-tetra-n-propylporphycene (TPrPc)FeIIICl is reduced using aqueous sodium dithionite or zinc amalgam to produce (TPrPc)FeII. The 1H NMR spectrum of (TPrPc)FeII (293 K; delta (ppm): pyrrole, -37.52; meso, 71.56; alpha-CH2, 27.47; beta-CH2, 8.92; gamma-CH3, 5.55) can be accounted for by the planar unligated iron(II) porphycene with an S = 1 ground electronic state. Introduction of dioxygen into a toluene-d8 solution of (TPrPc)FeII at 203 K results in the formation of the (mu-peroxo)diiron(III) porphycene (TPrPc)FeIII-O-O-FeIII(TPrPc). The value of the chemical shift of the pyrrole resonances (17.99 ppm at 203 K) of this species and its distinct non-Curie behavior imply strong antiferromagnetic iron(III)-iron(III) coupling via a mu-peroxo bridge. The (TPrPc)FeIII-O-O-FeIII(TPrPc) intermediate is stable at 203 K, but it converts into the (mu-oxo)diiron complex (TPrPc)FeIII-O-FeIII(TPrPc) upon warming above 203 K. Reaction of (TPrPc)FeIII-O-O-FeIII(TPrPc) with a nitrogen bases (B: pyridine-d5, 1-methylimidazole) results in a homolytic cleavage of the mu-peroxo bridge to form the ferryl porphycene complex B(TPrPc)FeIVO (1H NMR (223 K), delta (ppm): pyrrole, -1.32; meso, 11.80). B(TPrPc)FeIVO reacts with triphenylphosphine at 223 K to yield triphenylphosphine oxide.  相似文献   

10.
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on hydrogens covalently attached to carbon and oxygen atoms in 13C,15N labeled and fully protonated or fractionally deuterated proteins to uniformly enhance longitudinal relaxation of the 1HN spins and concomitantly the sensitivity of multipulse NMR experiments. The proposed longitudinal relaxation optimization is implemented in the 2D [15N,1H]-LTROSY, 2D [15N,1H]-LHSQC and 3D LTROSY-HNCA experiments yielding the factor 2-2.5 increase of the maximal signal-to-noise ratio per unit time at 600 MHz. At 900 MHz, the predicted decrease of the 1HN longitudinal relaxation times can be as large as one order of magnitude, making the proposed method an important tool for protein NMR at high magnetic fields.  相似文献   

11.
The blue copper proteins (BCPs), pseudoazurin from Achromobacter cycloclastes and rusticyanin from Thiobacillus ferrooxidans, have been investigated by (1)H NMR at a magnetic field of 18.8 T. Hyperfine shifts of the protons belonging to the coordinated ligands have been identified by exchange spectroscopy, including the indirect detection for those resonances that cannot be directly observed (the beta-CH(2) of the Cys ligand, and the NH amide hydrogen bonded to the S(gamma)(Cys) atom). These data reveal that the Cu(II)-Cys interaction in pseudoazurin and rusticyanin is weakened compared to that in classic blue sites (plastocyanin and azurin). This weakening is not induced by a stronger interaction with the axial ligand, as found in stellacyanin, but might be determined by the protein folding around the metal site. The average chemical shift of the beta-CH(2) Cys ligand in all BCPs can be correlated to geometric factors of the metal site (the Cu-S(gamma)(Cys) distance and the angle between the CuN(His)N(His) plane and the Cu-S(gamma)(Cys) vector). It is concluded that the degree of tetragonal distortion is not necessarily related to the strength of the Cu(II)-S(gamma)(Cys) bond. The copper-His interaction is similar in all BCPs, even for the solvent-exposed His ligand. It is proposed that the copper xy magnetic axes in blue sites are determined by subtle geometrical differences, particularly the orientation of the His ligands. Finally, the observed chemical shifts for beta-CH(2) Cys and Ser NH protons in rusticyanin suggest that a less negative charge at the sulfur atom could contribute to the high redox potential (680 mV) of this protein.  相似文献   

12.
A conclusion regarding a diequatorial orientation of the aryl substituents was drawn on the basis of a study of the 1H and 13C NMR spectra of 2,6-diarylthiacyclohexanes. A trans structure of the complexes with an equatorial Smetal bond was established by a comparative analysis of the 13C NMR spectra of 2,6-diarylthiacyclohexanes and their complexes with Pt(II) and Pd(II).Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 609–613, May, 1987.  相似文献   

13.
Despite the fact that lead poisoning is the most common disease of environmental origin in the United States, the spectroscopic properties of aqueous Pb(II) coordination compounds have not been extensively investigated. Spectroscopic techniques that can be used to probe the fundamental coordination chemistry of Pb(II) will aid in both the development of water-soluble ligands that bind lead both tightly and selectively and the characterization of potential biological targets. Here, we report the preparation and characterization of a series of Pb(II) complexes of amido- derivatives of EDTA. The 207Pb chemical shift observed in these complexes (2441, 2189, and 1764 ppm for [Pb(EDTA)]2-, Pb(EDTA-N2), and [Pb(EDTA-N4)]2+, respectively) provides an extremely sensitive measure of the local environment and the charge on each complex. These shifts help to map out the lead chemical shift range that can be expected for biologically relevant sites. In addition, we report the first two-dimensional 207Pb-1H heteronuclear multiple-quantum correlation (HMQC) nuclear magnetic resonance spectra and demonstrate that this experiment can provide useful information about the lead coordination environment in aqueous Pb(II) complexes. Because this technique allows 207Pb-1H couplings through three bonds to be identified readily, 207Pb-1H NMR spectroscopy should prove useful for the investigation of Pb(II) in more complex systems (e.g., biological and environmental samples).  相似文献   

14.
The assignment of the absolute configuration of alpha-chiral primary amines by complexation of their MPA derivatives with Ba2+ and NMR analysis of the changes generated is presented. All that is required is (a) the derivatization of the amine of unknown configuration with one enantiomer of the auxiliary reagent (MPA), either (R) or (S)-alpha-methoxyphenylacetic acid, (b) the recording of the 1H NMR spectrum of the resulting amide in MeCN-d3, (c) the addition of Ba(ClO4)2 to the NMR tube, and (d) the recording of a second spectrum after a few minutes of shaking. The above steps take a few minutes and are followed by an analysis of the shifts (measured as Deltadelta(Ba)) produced on the L1 and L2 substituents of the amine by the addition of Ba2+ and their comparison with those expected from the conformational changes produced by the complexation. The conformational changes initiated by complexation have been subjected to NMR and CD studies, which showed that the formation of the complex shifts the equilibrium from an antiperiplanar (AP) to a synperiplanar (SP) form, leading to an increase of the shielding by the phenyl group of MPA of the substituent of the amine located on the same side. In addition, theoretical calculations [density functional theory (DFT)] provide further support for the formation, structure, and stability of the complexes. The general applicability of this method and the trustworthiness of the resulting configurational assignment were guaranteed with a series of amines of known absolute configuration and varied structures, used as test compounds. The method proposed is simple, fast, and inexpensive, and it requires a very small amount of sample, only one derivatization, and the recording of just two 1H NMR spectra at room temperature. A graphical guide to simplify the application of this method is included.  相似文献   

15.
Iron(II) 2-aza-21-carbaporphyrins have been characterized by paramagnetically shifted (1)H and (2)H NMR spectra. The high-spin iron(II) complex (HCTPPH)Fe(II)Br displays the beta-H resonances which reflect the combination sigma and pi routes of spin density delocalization. The uniquely large isotropic shift of the inner H(21) hydrogen (812 ppm, 298 K) indicates an Fe(II)-[C(21)-H] agostic interaction.  相似文献   

16.
The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.  相似文献   

17.
In this paper crystal structures of three tetragonal 141/a β-Ni(NCS)2(4-Methylpyridine)4 clathrates containing p-xylene (1:1), m-xylene (1:1) and methanol (2:1 mole of guest/mole of host), respectively, as the guest components are reported and discussed.The guest molecules were found to occupy centrosymmetric cavities in the hoat structure. Non-centrosymmetric m-xylene molecules are disordered to at least two orientations interrelated by inversion; methanol molecules enter the cavities as centrosymmetric pairs.  相似文献   

18.
The dinucleating ligand ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetrakis[(2-(1-ethylbenzimidazoyl)] (EGTB-Et; 1) was used to synthesize the dinuclear Ni(II) tetraacetonitrile complex cation [Ni(2)(EGTB-Et)(CH(3)CN)(4)](2+) (2): triclinic space group P&onemacr; (a = 12.273(5) ?, b = 12.358(7) ?, c = 12.561(6) ?, alpha = 90.43(4) degrees, beta = 110.26(3) degrees, gamma = 99.21 (4) degrees, and Z = 1). The structure shows two identical octahedral Ni(II) centers each bound to two benzimidazole ring nitrogen atoms, one amine nitrogen atom, an ether oxygen atom, and two acetonitrile nitrogen atoms. The Ni(II) ions are tethered together by a diethyl ether linkage with a crystallographic center of inversion between the methylene carbons of this bridge. The Ni--Ni separation in 2 is 7.072 ?. The mononuclear Ni(II) complex cation [Ni(Bipy)(2)(OAc)](+) (3) (Bipy = bipyridine) was synthesized and crystallographically characterized: monoclinic space group P2(1)/c (a = 9.269(4) ?, b = 8.348(4) ?, c = 14.623(7) ?, and beta = 102.46(4) degrees, Z = 2). The Ni(II) ions in 3 adopts a distorted octahedral geometry and is bound to four bipyridine ring nitrogen atoms and two carboxylate oxygen atoms. The average Ni-N and Ni-O distances are 2.062 and 2.110 ?. The electronic absorption spectra of both 2 and 3 were recorded in acetonitrile solution and are consistent with octahedral coordination geometries about the Ni(II) ions with Racah parameters of 840 and 820 cm(-)(1), respectively. Both one- and two-dimensional (1)H NMR techniques were used to assign the observed hyperfine shifted (1)H NMR resonances of 2 and 3 in acetonitrile solution. Clear COSY cross signals are observed between the aromatic protons of both the benzimidazole and pyridine protons of 2 and 3, respectively. The use of 2D NMR methods to assign inequivalent aromatic protons rather than synthetic methods such as substitution or deuteration are discussed.  相似文献   

19.
The1H NMR spectra of various monomeric, dimeric and trimeric complexes of Ni(II) with n-hydroxypropyl-salicylaldimines have been measured and assigned. They are consistent with structures previously proposed for these complexes.  相似文献   

20.
测定了各pD值下BPHA[BPHA是N,N'-bis(2-aminoethyl)-1,3-propanediaminehexaaceticacid的简称,中文名称为二胺乙基丙二胺六乙酸]和Zn^2^+-BPHA的^1HNMR谱。BPHA两端羧甲基上亚甲基质子的化学位移δ~a和中间羧甲基上亚甲基质子的化学位移δ~b随pD值交替变化。Zn^2^+-BPHA的^1HNMR谱有3种情况:pD<6,对应Zn(II)-H~2BPHA^4^-,有一特征尖峰,显示自由-NH^+(CH~2COO^-)~2残基存在;pD=6-9,对应Zn(II)-HBPHA^5^-,该峰消失,显示4个胺基全部配位;pD>9,对应Zn(II)-BPHA^6^-,该峰再次出现,1个N(CH~2COO^-)~2脱离配位体系。在3种形态的配合物中,Zn-N键都是非活性的,Zn-O键在后两种形态配合物中是非活性的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号