首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Selected hydrophilic interaction chromatography (HILIC) columns packed with bare silica, bridge-ethyl hybrid silica, or an amide sorbent chemistry were utilized for an investigation of chromatographic behavior and separation selectivity of tryptic peptides. Retention model was proposed allowing for retention prediction of peptides with correlation coefficient R(2)~0.92-0.97 for various columns. The values of optimized amino acid retention coefficients were compared to those obtained for reversed-phase liquid chromatography (Gilar et al., Anal. Chem. 2010, 82, 265-275) and used to elucidate the impact of different amino acid on peptide HILIC retention. In contrast to reversed-phase chromatography, where presence of Phe, Trp, Ile, and Leu amino acid residues in sequence strongly promoted, and presence of hydrophilic His, Lys and Arg residues strongly reduced peptide retention, the effects of these amino acid residues in HILIC were opposite (His, Lys and Arg promote, Phe, Trp, Ile and Leu demote peptide retention in HILIC). Retention coefficient optimized for pH experiments illustrated the impact of silanols on HILIC retention.  相似文献   

2.
Statistical analysis of data from 39 proteins (13 766 amino acid residues) digested with immobilized porcine pepsin under conditions compatible with hydrogen/deuterium (H/D) exchange (<1 degrees C, <30 s) was performed to examine pepsin cleavage specificity. The cleavage of pepsin was most influenced by the amino acid residue at position P1. Phe and Leu are favored residues each with a cleavage probability greater than 40%. His, Lys, Arg, or Pro residues prohibit cleavage when found at the P1 position. Pro also cannot be at position P2 (cleavage probability <0.3%). Occupation of the P3 position by His, Lys, or Arg, or occupation of the P2' position by Pro, also leads to very little cleavage (cleavage probability <1.7%). The average cleavage probability over the entire data set was 13.6%, which is slightly lower than the value previously obtained by Powers et al. (14.8%). This is due, in part, to the larger protein sizes used in the current study. While the specificity of pepsin was similar to that previously observed, higher selectivity was observed in the present study due to less experimental variation in the conditions used to generate our database.  相似文献   

3.
Absolute 18-crown-6 (18C6) affinities of five amino acids (AAs) are determined using guided ion beam tandem mass spectrometry techniques. The AAs examined in this work include glycine (Gly), alanine (Ala), lysine (Lys), histidine (His), and arginine (Arg). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the AAs as well as the proton bound complexes comprised of these species, (AA)H(+)(18C6). The proton affinities (PAs) of Gly and Ala are lower than the PA of 18C6, whereas the PAs of Lys, His, and Arg exceed that of 18C6. Therefore, the collision-induced dissociation (CID) behavior of the (AA)H(+)(18C6) complexes differs markedly across these systems. CID of the complexes to Gly and Ala produces H(+)(18C6) as the dominant and lowest energy pathway. At elevated energies, H(+)(AA) was produced in competition with H(+)(18C6) as a result of the relatively favorable entropy change in the formation of H(+)(AA). In contrast, CID of the complexes to the protonated basic AAs results in the formation of H(+)(AA) as the only direct CID product. H(+)(18C6) was not observed, even at elevated energies, as a result of unfavorable enthalpy and entropy change associated with its formation. Excellent agreement between the measured and calculated (AA)H(+)-18C6 bond dissociation energies (BDEs) is found with M06 theory for all complexes except (His)H(+)(18C6), where theory overestimates the strength of binding. In contrast, B3LYP theory significantly underestimates the (AA)H(+)-18C6 BDEs in all cases. Among the basic AAs, Lys exhibits the highest binding affinity for 18C6, suggesting that the side chains of Lys residues are the preferred binding site for 18C6 complexation in peptides and proteins. Gly and Ala exhibit greater 18C6 binding affinities than Lys, suggesting that the N-terminal amino group provides another favorable binding site for 18C6. Trends in the 18C6 binding affinities among the five AAs examined here exhibit an inverse correlation with the polarizability and proton affinity of the AA. Therefore, the ability of the N-terminal amino group to compete for 18C6 complexation is best for Gly and should become increasing less favorable as the size of the side chain substituent increases.  相似文献   

4.
Absolute 18-crown-6 (18C6) affinities of nine protonated peptidomimetic bases are determined using guided ion beam tandem mass spectrometry techniques. The bases (B) included in this work are mimics for the n-terminal amino group and the side chains of the basic amino acids, i.e., the favorable sites for binding of 18C6 to peptides and proteins. Isopropylamine is chosen as a mimic for the n-terminal amino group, imidazole and 4-methylimidazole are chosen as mimics for the side chain of histidine (His), 1-methylguanidine is chosen as a mimic for the side chain of arginine (Arg), and several primary amines including methylamine, ethylamine, n-propylamine, n-butylamine, and 1,5-diamino pentane as mimics for the side chain of lysine (Lys). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the peptidomimetic bases, as well as the proton bound complexes comprised of these species, (B)H(+)(18C6). The measured 18C6 binding affinities of the Lys side chain mimics are larger than the measured binding affinities of the mimics for Arg and His. These results suggest that the Lys side chains should be the preferred binding sites for 18C6 complexation to peptides and proteins. Present results also suggest that competition between Arg or His and Lys for 18C6 is not significant. The mimic for the n-terminal amino group exhibits a measured binding affinity for 18C6 that is similar to or greater than that of the Lys side chain mimics. However, theory suggests that binding to n-terminal amino group mimic is weaker than that to all of the Lys mimics. These results suggest that the n-terminal amino group may compete with the Lys side chains for 18C6 complexation.  相似文献   

5.
Ricin and its corresponding polypeptides (A & B chain) were purified from castor seed. The molecular weight of ricin subunits were 29,000 and 28,000 daltons. The amino acids in ricin determined were Asp45 The22 Ser40 Glu53 Cys4 Gly96 His5 Ile21 Leu33 Lys20 Met4 Phe13 Pro37 Tyr11 Ala45 Val23 Arg20 indicating that ricin contains approximately 516 amino acid residues. The amino acids of the two subunits of ricin A and B chains were Asp23 The12 Ser21 Glu29 Cys2 Gly48 His3 Ile12, Leu17 Lys10 Met2 Phe6 Pro17 Tyr7 Ala35 Val13 Arg13 while in B chain the amino acids were Asp22 The10 Ser19 Glu25 Cys2 Gly47 His1 Ile10, Leu15 Lys11 Met1 Phe7 Pro6 Tyr5 Ala32Val11 Arg10. The total helical content of ricin came around 53.6% which is a new observation.  相似文献   

6.
Resonance assignments of the 1H spectrum of insulin are the basis on which to investigate its solution conformation by using NMR method. Owing to the complicated aggregation behaviour of the molecule to give broadened n. m. r. lines, only limited resonance assignments have been reported. S-sulfonated A and B chains of insulin gave 1H spectra with good resolutions. Based on the 500 MHz absolute 2D-COSY spectrum and 400 MHz phase sensitive DQF-COSY, Relayed-COSY and NOESY spectra of B chain recorded in D2O, all of the spin system identifications of the non-labile protons in the S-sulfonated B chain of insulin were reported including the specific resonance assignments of eight residues: B3Asn, B9Ser, B16Tyr, B22Arg, B26Tyr, B27Thr, B28Pro and B29Lys. The pK values of B16 and B26 tyrosine are 10.65 and 10.60 respectively from pH titration.  相似文献   

7.
The two leading RP-HPLC approaches for deriving hydrophobicity values of amino acids utilize either sets of designed synthetic peptides or extended random datasets often extracted from proteomics experiments. We find that the best examples of these two methods provide virtually identical results--with exception of Lys, Arg, and His. The intrinsic hydrophobicity values of the remaining residues as determined by Kovacs et al. (Biopolymers 84 (2006) 283) correlates with an R(2)-value of 0.995+ against amino acid retention coefficients from our Sequence Specific Retention Calculator model (Anal. Chem. 78 (2006) 7785). This novel finding lays the foundation for establishing consensus amino acids hydrophobicity scales as determined by RP-HPLC. Simultaneously, we find the assignment of hydrophobicity values for charged residues (Lys, Arg and His at pH 2) is ambiguous; their retention contribution is strongly affected by the overall peptide hydrophobicity. The unique behavior of the basic residues is related to the dualistic character of the RP peptide retention mechanism, where both hydrophobic and ion-pairing interactions are involved. We envision the introduction of "sliding" hydrophobicity scales for charged residues as a new element in peptide retention prediction models. We also show that when using a simple additive retention prediction model, the "correct" coefficient value optimization (0.98+ correlation against values determined by synthetic peptide approach) requires a training set of at least 100 randomly selected peptides.  相似文献   

8.
9.
Targeting protein surfaces involved in protein–protein interactions by using supramolecular chemistry is a rapidly growing field. NMR spectroscopy is the method of choice to map ligand‐binding sites with single‐residue resolution by amide chemical shift perturbation and line broadening. However, large aromatic ligands affect NMR signals over a greater distance, and the binding site cannot be determined unambiguously by relying on backbone signals only. We herein employed Lys‐ and Arg‐specific H2(C)N NMR experiments to directly observe the side‐chain atoms in close contact with the ligand, for which the largest changes in the NMR signals are expected. The binding of Lys‐ and Arg‐specific supramolecular tweezers and a calixarene to two model proteins was studied. The H2(C)N spectra track the terminal CH2 groups of all Lys and Arg residues, revealing significant differences in their binding kinetics and chemical shift perturbation, and can be used to clearly pinpoint the order of ligand binding.  相似文献   

10.
The Hpn-like protein (Hpnl), a histidine- and glutamine-rich protein, is critical for Helicobacter pylori colonization in human gastric muscosa. In this study, the thermodynamic properties of Ni(II), Cu(II), Co(II), and Zn(II) toward Hpnl were studied by isothermal titration calorimetry (ITC). We found that Hpnl exhibits two independent binding sites for Ni(II) as opposed to one site for Cu(II), Co(II), and Zn(II). Protease digestion and chemical denaturation analysis further revealed that Ni(II) confers a higher stability upon Hpnl than other divalent metal ions. The potential Ni(II) binding sites are localized in the His-rich domain of Hpnl as confirmed by mutagenesis in combination with modification of histidine residues of the protein. We also demonstrated that the single mutants (H29A and H31A) and tetrameric mutant (H29-32A) cut nearly half of the binding capacity of Hpnl towards nickel ions, whereas other histidine residues (His30, 32, 38, 39, 40, and 41) are nonessential for nickel coordination. Escherichia coli cells that harbored H29A, H31A, and H29-32A mutant genes exhibited less tolerance toward high concentrations of extracellular nickel ions than those with the wild-type gene. Our combined data indicated that the conserved histidine residues, His29 and His31 in the His-rich domain of Hpnl, are critical for nickel binding, and such a binding is important for Hpnl protein to fulfill its biological functions.  相似文献   

11.
The specificity and rate of cleavage of adrenocorticotrophic hormone (ACTH) peptide bonds by endoproteinase Arg C were analyzed using capillary electrophoresis (CE) and reversed-phase (C18) high-performance liquid chromatography (HPLC). Acidic cleavage products were readily resolved by CE in uncoated capillaries using low ionic strength electrolytes. However, products predicted to have a net positive charge greater than 2 or more than 4 positively charged groups per peptide did not migrate out from the capillary at low ionic strength. Addition of salts and zwitterions to the electrolyte decreased capillary-peptide interactions such that all of the ACTH peptides examined were eluted with high efficiency separation by CE. Commercially obtained endoproteinase Arg C preparations exhibited peptidase activity at Lys-15-Lys16 and at Lys16-Arg17 in addition to the expected cleavage at Arg-X bonds. ACTH peptide bond cleavage rates for Arg8-Trp9, Arg17-Arg-18, Lys15-Lys16, and Lys16-Arg17 were 1.46, 0.096, 0.57, and 0.029 mumol min-1 mg-1 respectively. CE separations generally exhibited better resolution and were accomplished in shorter times than C18 HPLC separations. These properties make CE a particularly appropriate method for kinetic analysis of proteolytic enzyme action on peptide substrates.  相似文献   

12.
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.  相似文献   

13.
Resonance assignments of the ~1H spectrum of insulin are the basis on which to investi-gate its solution conformation by using NMR method. Owing to the complicated aggregationbehaviour of the molecule to give broadened n. m. r. lines, only limited resonance assignmentshave been reported. S-sulfonated A and B chains of insulin gave ~1H spectra with good reso-lutions. Based on the 500 MHz absolute 2D-COSY spectrum and 400 MHz phase sensitiveDQF-COSY, Relayed-COSY and NOESY spectra of B chain recorded in D_2O, all of thespin system identifications of the non-labile protons in the S-sulfonated B chain of insulinwere reported including the specific resonance assignments of eight residues: B_3Asn, B_9Ser,B_(16)Tyr, B_(22)Arg, B_(26)Tyr, B_(27)Thr, B_(28)Pro and B_(29)Lys. The pK values of B_(16) and B_(26) tyrosineare 10.65 and 10.60 respectively from pH titration.  相似文献   

14.
We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn − Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn − Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=−7.3 kcal mol−1.  相似文献   

15.
16.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to study peptide-peptide interaction. The interaction was seen when 6-aza-2-thiothymine was used as a matrix (pH 5.4), but was disrupted with a more acidic matrix, alpha-cyano-4-hydroxycinnamic acid (pH 2.0). In the present study, we show that dynorphin, an opioid peptide, and five of its fragments that contain two adjacent basic residues (Arg6-Arg7), all interact noncovalently with peptides that contain two to five adjacent acidic residues (Asp or Glu). Two other nonrelated peptides containing two (Arg6-Arg7) or three (Arg1-Lys2-Arg3) adjacent basic amino acid residues were studied and exhibited the same behavior. However, peptides containing adjacent Lys or His did not form noncovalent complexes with acidic peptides. The noncovalent bonding was sufficiently stable that digestion with trypsin only cleaved Arg and Lys residues that were not involved in hydrogen bonding with the acidic residues. In an equimolar mixture of dynorphin, dynorphin fragments (containing the motif RR), and an acidic peptide (minigastrin), the acidic peptide preferentially complexed with dynorphin. If the concentration of minigastrin was increased 10 fold, noncovalent interaction was seen with dynorphin and all its fragments containing the motif RR. In the absence of dynorphin, minigastrin formed noncovalent complexes with all dynorphin fragments. These findings suggest that conformation, equilibrium, and concentration do play a role in the occurrence of peptide-peptide interaction. Observations from this study include: (1) ionic bonds were not disrupted by enzymatic digests, (2) conformation and concentration influenced complex formation, and (3) the complex did not form with fragments of dynorphin or unrelated peptides that did not contain the motifs RR or RKR, nor with a fragment of dynorphin where Arg7 was mutated to a phenylalanine residue. These findings strongly suggest that peptide-peptide interaction does occur, and can be studied by MALDI if near physiologic pH is maintained.  相似文献   

17.
Interest in the 37-residue human islet amyloid polypeptide (hIAPP) is related to its ability to form amyloid deposits in patients affected by type II diabetes. Attempts to unravel the molecular features of this disease have indicated several regions of this polypeptide to be responsible for either the ability to form insoluble fibrils or the abnormal interaction with membranes. To extend these studies to peptides that enclose His18, whose ionization state is believed to play a key role in the aggregation of hIAPP, we report on the synthesis of two peptides, hIAPP17-29 and rIAPP17-29, encompassing the 17-29 sequences of human and rat IAPP, respectively, as well as on their conformational features in water and in several membrane-mimicking environments as revealed by circular dichroism (CD) and 2D-NMR studies. hIAPP17-29 adopts a beta-sheet structure in water and its solubility increases at low pH. Anionic sodium dodecyl sulfate (SDS) micelles promoted the formation of an alpha-helical structure in the peptide chain, which was poorly influenced by pH variations. rIAPP17-29 was soluble and unstructured in all the environments investigated, with a negligible effect of pH. The membrane interactions of hIAPP17-29 and rIAPP17-29 were assessed by recording differential scanning calorimetry (DSC) measurements aimed at elucidating the peptide-induced changes in the thermotropic behaviour of zwitterionic (DPPC) and negatively charged (DPPC/DPPS 3:1) model membranes (DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPS=1,2-dipalmitoyl-sn-glycero-3-phosphoserine). Results of DSC experiments demonstrated the high potential of hIAPP17-29 to interact with DPPC membranes. hIAPP17-29 exhibited a negligible affinity for negatively charged DPPC/DPPS model membranes at neutral pH. On the other hand, rIAPP17-29 did not interact with neutral or negatively charged membranes. The role played by His18 in the modulation of the biophysical properties of this hIAPP region was assessed by synthesising and studying the R18HrIAPP17-29 peptide; the replacement of a single Arg with a His residue is not sufficient to induce either amyloidogenic propensity or membrane interaction in this region. The results show that the 17-29 domain of hIAPP has many properties of the full-length protein "in vitro" and this opens up new perspectives for both research and eventually therapy.  相似文献   

18.
Intraneuronal inclusions consisting of hypermetallated, (poly-)ubiquitinated proteins are a hallmark of neurodegeneration. To highlight the possible role played by metal ions in the dysfunction of the ubiquitin-proteasome system, here we report on zinc(II)/ubiquitin binding in terms of affinity constants, speciation, preferential binding sites and effects on protein stability and self-assembly. Potentiometric titrations allowed us to establish that at neutral pH only two species, ZnUb and Zn(2)Ub, are present in solution, in line with ESI-MS data. A change in the diffusion coefficient of ubiquitin was observed by NMR DOSY experiments after addition of Zn(II) ions, and thus indicates metal-promoted formation of protein assemblies. Analysis of (1)H, (15)N, (13)Cα and (13)CO chemical-shift perturbation after equimolar addition of Zn(II) ions to ubiquitin outlined two different metal-binding modes. The first involves a dynamic equilibrium in which zinc(II) is shared between a region including Met1, Gln2, Ile3, Phe4, Thr12, Leu15, Glu16, Val17, Glu18, Ile61 and Gln62 residues, which represent a site already described for copper binding, and a domain comprising Ile23, Glu24, Lys27, Ala28, Gln49, Glu51, Asp52, Arg54 and Thr55 residues. A second looser binding mode is centred on His68. Differential scanning calorimetry evidenced that addition of increasing amounts of Zn(II) ions does not affect protein thermal stability; rather it influences the shape of thermograms because of the increased propensity of ubiquitin to self-associate. The results presented here indicate that Zn(II) ions may interact with specific regions of ubiquitin and promote protein-protein contacts.  相似文献   

19.
The early stage products of the Maillard reaction of egg white lysozyme with D-glucose were studied. Incubation with D-glucose at 50 degrees C for 20 days caused reaction on the Lys and Arg residues of lysozyme as follows: all of the six Lys residues and 10 of the 11 Arg residues in lysozyme reacted with D-glucose; Arg 61 did not react with D-glucose. The Lys residues reacted with D-glucose with 1 mol of dehydration per mole of residue, and the Arg residues reacted with 2 mol of dehydration per mole of residue. The major constituent of the Amadori product with the epsilon-amino group of the Lys residue and the D-glucose was found to be the beta-pyranose form. The structure of the early stage product of the Maillard reaction of a protein with a sugar is the same as that of an amino acid with a sugar.  相似文献   

20.
The relative affinity of the cationic triangular metallaprism, [(pCH(3)C(6)H(4)Pr(i))(6)Ru(6)(tpt)(2)(dhbq)(3)](6+) ([1](6+)), for various amino acids, ascorbic acid, and glutathione (GSH) has been studied at 37 °C in aqueous solutions at pD 7, using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). The metallaprism [1](6+), which is constituted of six (pCH(3)C(6)H(4)Pr(i))Ru corners bridged by three 1,4-benzoquinonato (dhbq) ligands and connected by two 2,4,6tri(pyridin4yl)1,3,5-triazine (tpt) triangular panels, disassembled in the presence of Arg, His, and Lys, while it remains intact with Met. Coordination to the imidazole nitrogen atom in His or to the basic NH/NH(2) groups in Arg and Lys displaces the dhbq and tpt ligands from the (p-cymene)Ru units, and subsequent coordination to the amino and carboxylato groups forms stable N,N,O metallacycles. The binding to amino acids proceeds rapidly, as determined by NMR spectroscopy. Interestingly, solutions of [1](6+) are able to catalyze oxidation of the thiol group of Cys and GSH to give the corresponding disulfides and of ascorbic acid to give the corresponding dehydroascorbic acid. Competition experiments with Arg, Cys, His, and Lys show the simultaneous formation of one single adduct, the (p-cymene)Ru-His complex, and oxidation of Cys to cystine. Furthermore, the (p-cymene)Ru-His complex formed upon the addition of His to [1][CF(3)SO(3)](6) is able to oxidize Cys to cystine much more efficiently than [1](6+). These results provide evidence against interaction with proteins as process in the release of encapsulated guest molecules. Oxidation of Cys and GSH to give the corresponding disulfides may explain the in vitro anticancer activity of [1](6+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号