首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Portuguese guitar is a pear-shaped instrument with twelve metal strings which is widely used in Portuguese traditional music. Unlike most common guitars, it has a curved top-plate and a specific violin-like bridge which is not rigidly fixed to the soundboard of the instrument. From the dynamical point of view, if the bridge transmits the strings vibrations to the instrument body in order to maximize the radiated energy, it also couples all the component parts of the instrument which therefore interact by structural coupling. This can originate various audible effects such as beating behavior and the excitation of numerous sympathetic resonances enhanced by the large number of strings of the instrument, and this is certainly why the Portuguese guitar has such distinct sound compared to other guitars. In this paper, a fully coupled time-domain model of the Portuguese guitar is developed and a series of simulations are presented to emphasize the various coupling phenomena involved in sound production. To reproduce the main musical features, the model includes the coupled dynamics of the twelve strings supported by a bridge which interact with the body of the instrument, described through Finite-Element modeling of the soundboard of a typical Portuguese guitar. Further simple models have been devised for the string/fret interaction and the pluck excitation. Since nonlinear effects are quite apparent in the behavior of string musical instruments, the string dynamics is modeled by the Kirchhoff–Carrier equations which describe large-amplitude string vibrations, and includes the coupling between both polarizations of string motion. The coupling between the strings and the soundboard at the bridge is provided by a model of the bridge kinematics, built on the basis of simple geometrical rationale, so that the two perpendicular string motions can exchange energy back and forth. By a close examination of the energy transfers between the various subsystems of the model, we first assess the correct behavior of the physical model and then examine the respective influence of the string nonlinearity and the bridge on the nonplanar motion of the string. The fully coupled model which pertains to the restricted group of studies which deals with the complete physical-based modeling of a multi-stringed instrument, captures many important phenomena observed in practice, among which the pitch glide effect and the mutual excitation of sympathetic vibrations.  相似文献   

2.
This paper describes a design procedure for a musical instrument based on inharmonic (nonuniform) strings. Fabricating nonuniform strings from commercially available strings constrains the possible string diameters, and hence the possible inharmonicities. Detailed simulations of the strings are combined with a measure of sensory dissonance (or roughness) to help narrow down the remaining possibilities. A particularly intriguing variation is a string that consists of three segments: two equal unwound segments surrounding a thicker wound portion. The corresponding musical scale, built on the 12th root of 4, is called the hyperoctave. A standard piano is modified to play in this tuning using these inharmonic strings; this instrument is called the hyperpiano.  相似文献   

3.
A model of transverse piano string vibration, second order in time, which models frequency-dependent loss and dispersion effects is presented here. This model has many desirable properties, in particular that it can be written as a well-posed initial-boundary value problem (permitting stable finite difference schemes) and that it may be directly related to a digital waveguide model, a digital filter-based algorithm which can be used for musical sound synthesis. Techniques for the extraction of model parameters from experimental data over the full range of the grand piano are discussed, as is the link between the model parameters and the filter responses in a digital waveguide. Simulations are performed. Finally, the waveguide model is extended to the case of several coupled strings.  相似文献   

4.
A. Stulov 《Applied Acoustics》2008,69(11):977-984
Several stages of physics-based mathematical modelling are described for the design of the piano string scale. Strings are assumed to be perfectly flexible, and piano hammers are described by a nonlinear hysteretic model. It is also assumed that the parameters of the hammers for the whole hammer set are determined experimentally beforehand. Simulation procedures are used to systematically adjust the structure of the piano scale to its optimal value. The efficiency of the piano scale is improved by the analysis of the numerically simulated string motion and spectra of the string vibrations excited by the impact of the hammer. The set of variables to be optimized includes the linear mass density and tension of the piano strings and the position of the striking point. In addition, the problem of choosing appropriate tensions for neighbouring strings terminated on separate bass and treble bridges is considered.  相似文献   

5.
The strings formed in the solutions of trifluoroacetylated amino alcohols in cyclohexane were studied. It was found that microscopic strings with the diameter d ~ 1 μm were woven from tightly coupled rigid submicroscopic strings with the diameter d ~ 0.1 μm in increments of >100 μm. Therefore, the compound strings are transparent, and they usually look like an unstructured cylinder. Microscopic strings can be tightly combined in strings to 60 μm in diameter. Submicroscopic strings are arranged almost parallel to the axis of a microscopic string. The microscopic string acts as a polarizer: it transmits light polarized across its axis and absorbs light polarized along the axis. The majority of these properties can be explained based on the assumption that a connection between the strings of all hierarchical levels in cyclohexane is stronger than that in solvents with different string morphology.  相似文献   

6.
This study investigates the acoustical and perceptual influence of the string parts outside the speaking length in grand pianos (front and rear duplex strings). Acoustical measurements on a grand piano in concert condition were conducted, measuring the fundamental frequencies of all main and duplex strings in the four octaves D4-C8. Considerable deviations from the nominal harmonic relations between the rear duplex and main string frequencies, as described by the manufacturer in a patent, were observed. Generally the rear duplex strings were tuned higher than the nominal harmonic relations with average and median deviations approaching +50 cent. Single keys reached +190 and -100 cent. The spread in deviation from harmonic relations within trichords was also substantial with average and median values around 25 cent, occasionally reaching 60 cent. Contributions from both front and rear duplex strings were observed in the bridge motion and sound. The audibility of the duplex strings was studied in an ABX listening test. Complete dampening of the front duplex was clearly perceptible both for an experiment group consisting of musicians and a control group with naive subjects. The contribution from the rear duplex could also be perceived, but less pronounced.  相似文献   

7.
This paper describes the main features of the sustain-pedal effect in the piano through signal analysis and presents an algorithm for simulating the effect. The sustain pedal is found to increase the decay time of partials in the middle range of the keyboard, but this effect is not observed in the case of the bass and treble tones. The amplitude beating characteristics of piano tones are measured with and without the sustain pedal engaged, and amplitude envelopes of partial overtone decay are estimated and displayed. It is found that the usage of the sustain pedal introduces interesting distortions of the two-stage decay. The string register response was investigated by removing partials from recorded tones; it was observed that as the string register is free to vibrate, the amount of sympathetic vibrations is increased. The synthesis algorithm, which simulates the string register, is based on 12 string models that correspond to the lowest tones of the piano. The algorithm has been tested with recorded piano tones without the sustain pedal. The objective and subjective results show that the algorithm is able to approximately reproduce the main features of the sustain-pedal effect.  相似文献   

8.
A method of searching for cosmic strings based on an analysis of the cosmic microwave background (CMB) anisotropy is presented. A moving straight cosmic string is shown to generate structures of enhanced and reduced brightness with a distinctive shape. The conditions under which a string can be detected by both CMB anisotropy and gravitational lensing in optical surveys are analyzed. For a relativistic string with a deficit angle of ~1″–2″, the amplitude of the generated anisotropy is shown to be ~15–30 μK.  相似文献   

9.
The dynamic string motion, which displacement is unilaterally constrained by the rigid termination condition of an arbitrary geometry has been simulated and analyzed. The treble strings of a grand piano usually terminate at a capo bar, which is situated above the strings. The apex of a V-shaped section of the capo bar defines the end of the speaking length of the strings. A numerical calculation based on the traveling wave solution is proposed for modeling the nonlinearity inducing interactions between the vibrating string and the contact condition at the point of string termination. It was shown that the lossless string vibrates in two distinct vibration regimes. In the beginning the string starts to interact in a nonlinear fashion with the rigid terminator, and the resulting string motion is aperiodic. Consequently, the spectrum of the string motion depends on the amplitude of string vibrations, and its spectral structure changes continuously with the passage of time. The duration of that vibration regime depends on the geometry of the terminator. After some time of aperiodic vibration, the string vibrations settle in a periodic regime where the resulting spectrum remains constant.  相似文献   

10.
The tuning system of a piano has remained relatively unchanged since the instrument’s inception. A piano’s tuning system has been designed to be both inexpensive to manufacture and to preserve the tension and thus pitch of each string over long periods of time. This tuning system requires such a high degree of skill to manipulate that only trained professionals are able to tune pianos. This paper presents a novel adjustable impact tuning hammer and a reinforcement learning control system that may allow piano owners to tune their own pianos in the future.  相似文献   

11.
Up to now calculations of the interaction of cosmic strings have neglected gravity. We consider the purely gravitational interactions that occur at large distances, using the conical line singularity for the gravitational field of a string. We construct spaces with multiple intersecting conical strings, that are exactly consistent with General Relativity, and which can be covered in a single Minkowski coordinate patch, using a Regge calculus type construction. We show that after two such strings pass through each other they remain connected by another string, and we derive the branching rules which govern the junction of three strings. These rules apply to conical type strings in any smoothly curved background, whether they are straight or curved, moving or stationary, and they show that, at the junction, the three strings must be as coplanar as is possible in such a space. For these results to be matched onto the short range results of Field Theory calculations, it is suggested that gravitational radiation must be introduced. This would mean that gravitation is not negligible in these interactions.  相似文献   

12.
We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them.  相似文献   

13.
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored.  相似文献   

14.
Primordial black hole formation by cosmic string collapses is reconsidered in the case where the winding number of the string is larger than unity. The line energy density of a multiple winding string becomes greater than that of a single winding string so that the probability of black hole formation by string collapse during loop oscillation would be strongly enhanced. Moreover, this probability could be affected by changes in gravity theory due to large extra dimensions based on the brane universe model. In addition, a wider class of strings which are stable compared to conventional cosmic strings can contribute to such a scenario. Although the production of the multiple winding defect is suppressed and its number density should be small, the enhancement of black hole formation by the increased energy density may provide a large number of evaporating black holes in the present universe which gives more stringent constraints on the string model compared to the ordinary string scenario.  相似文献   

15.
本系列文章一共4篇,在电磁学和电动力学框架内用尽量科普的方式分别介绍磁单极的若干奇特性质.本篇文章主要介绍狄拉克磁单极是如何展示矢量势的规范变换的.我们首先简要介绍规范变换与规范对称性及狄拉克磁单极与狄拉克弦,然后讨论狄拉克磁单极与规范变换的联系.我们显式演示狄拉克弦摆动产生的规范变换,弦摆动区域对场点所张的立体角正比于规范变换的变换函数.磁偶极子则可以由两个无穷靠近的正反狄拉克磁单极构成.相应两条狄拉克弦位置的变化都对应磁偶极子矢量势的规范变换,特别当两条弦重合时弦效应相互抵消,只剩下纯的磁偶极子.传统的由磁偶极子产生的矢量势的规范变换则可以图像化为组成磁偶极子的正反狄拉克磁单极的狄拉克弦的摆动.我们显式地计算了位于坐标原点弦为直线的狄拉克磁单极,并进一步构造了没有奇异的吴大峻-杨振宁磁单极.  相似文献   

16.
We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.  相似文献   

17.
A cellular automaton is a discrete dynamical system whose evolution is governed by a deterministic rule involving local interactions. It is shown that given an arbitrary string of values and an arbitrary neighborhood size (representing the range of interaction), a simple procedure can be used to find the rules of that neighborhood size under which the string is invariant. The set of nearestneighbor rules for which invariant strings exist is completely specified, as is the set of strings invariant under each such rule. For any automaton rule, an associated filtering rule is defined for which the only attractors are spatial sequences consisting of concatenations of invariant strings. A result is provided defining the rule of minimum neighborhood size for which an arbitrarily chosen string is the unique invariant string. The applications of filtering rules to pattern recognition problems are discussed.  相似文献   

18.
《Physics letters. [Part B]》1988,212(3):273-276
The phase transition which produces cosmic strings is studied in curved spacetime. It is shown that cosmic string formation naturally takes place in the late inflationary stage if the string-forming scalar field is appropriately coupled with the spacetime curvature. As a result the cosmic string scenario of galaxy formation turns out to be compatible with inflation.  相似文献   

19.
《Nuclear Physics B》1996,475(3):679-687
The application of D-brane methods to large black holes whose Schwarzschild radius is larger than the compactification scale is problematic. Callan and Maldacena have suggested that despite apparent problems of strong interactions when the number of branes becomes large, the open string degrees of freedom may remain very dilute due to the growth of the horizon area which they claim grows more rapidly than the average number of open strings. Such a picture of a dilute weakly coupled string system conflicts with the picture of a dense string soup that saturates the bound of one string per Planck area. A more careful analysis shows that Callan and Maldacena were not fully consistent in their estimates. In the form that their model was studied it can not be used to extrapolate to large mass without being in conflict with the Hawking-Bekenstein entropy formula. A somewhat modified model can reproduce the correct entropy formula. In this “improved model” the number of string bits on the horizon scales like the entropy in agreement with earlier speculations of Susskind.  相似文献   

20.
A nonlinear model for a vibrating Timoshenko beam in non-forced unknown rotation is derived from the virtual work principle applied to a system of beam with mass at the end. The system represents a piano hammer shank coupled to a hammer head. An energy-based numerical scheme is then provided, obtained by non-classical approaches. A major difficulty for time discretization comes from the nonlinear behavior of the kinetic energy of the system. This new numerical scheme is then coupled to a global energy-preserving numerical solution for the whole piano. The obtained numerical simulations show that the pianistic touch clearly influences the spectrum of the piano sound of equally loud isolated notes. These differences do not come from a possible shock excitation on the structure, or from a changing impact point, or a “longitudinal rubbing motion” on the string, since neither of these features is modeled in our study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号