首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xylanases, whose levels in fungi are generally much higher than those in yeast and bacteria. We evaluated the influence of carbon sources, nitrogen sources, and moisture content on xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Among agricultural wastes tested (wheat bran, untreated wheat straw, treated wheat straw, beet pulp, and soja meal), untreated wheat straw gave the highest production of xylanase. Optimal initial moisture content for xylanase production was 83%. The addition of 0.4 g of xylan or easily metabolizable sugar, such as glucose and xylose, at a concentration of 2% to wheat straw enhanced xylanase production. In solid-state fermentation, even at high concentrations of glucose or xylose (10%), catabolic repression was minimized compared to the effect observed in liquid culture. Yeast extract was the best nitrogen source among the nitrogen sources investigated: peptone, ammonium nitrate, sodium nitrate, ammonium chloride, and ammonium sulfate. A combination of yeast extract and peptone as nitrogen sources led to the best xylanase production.  相似文献   

2.
This paper implies production of cellulase and xylanase enzyme using a potent strain of Trichoderma harzianum for the efficient deinking of photocopier waste papers. Different nutritional and environmental factors were optimized for higher production of cellulase along with xylanase. After fermentation, maximum enzyme extraction was achieved from fermented matter using a three-step extraction process with increased efficiency by 26.6–29.3 % over single-step extraction. Static solid state was found as the best fermentation type using wheat bran (WB) as carbon source and ammonium ferrous sulfate (0.02 M) as nitrogen source. Subsequently, inoculum size (8?×?106 CFU/gds), incubation days (4 days), temperature (34 °C), initial pH (6.0), and moisture ratio (1:3) significantly affected the enzyme production. Cellulase and xylanase activities were found to be maximum at pH 5.5 and temperature 55–60 °C with good stability (even up to 6 h). Furthermore, this crude enzyme was evaluated for the deinking of photocopier waste papers without affecting the strength properties with improved drainage as an additional advantage. The crude enzyme-deinked pulp showed 23.6 % higher deinking efficiency and 3.2 % higher brightness than chemically deinked pulp. Strength properties like tensile, burst indices, and folding endurance were also observed to improve by 6.7, 13.4, and 10.3 %, respectively, for enzyme-deinked pulp. However, the tear index was decreased by 10.5 %. The freeness of the pulp was also increased by 21.6 % with reduced drainage time by 13.9 %.  相似文献   

3.
An extracellular low molecular weight xylanase (Xyn628) from Streptomyces sp. CS628 was isolated from Korean soil sample, produced in wheat bran medium, purified, and biochemically characterized. Xyn628 was purified 4.8-fold with a 33.78 % yield using Sepharose CL-6B column chromatography. The purified xylanase was ~18.1 kDa estimated by SDS-PAGE and xylan zymography. N-terminal amino acid sequences of Xyn628 were AYIKEVVSRAYM. The enzyme was found to be stable in a broad range of pH (5.0–13.0) and up to 60 °C and have optimal pH and temperature of pH 11.0 and 60 °C, respectively. Xyn628 activities were remarkable affected by various detergents, chelators, modulators, and metal ions. The xylanase produced xylobiose and xylotriose as principal hydrolyzed end products from the xylan. It was found to degrade agro-waste materials like corn cob and wheat bran by Xyn628 (20 U/g) as shown by electron microscopy. As being simple in purification, low molecular weight, alkaline, thermostable, and ability to produce xylooligosaccharides show that Xyn628 has potential applications in bioindustries as a biobleaching agent or/and xylooligosaccharides production with an appropriate utilization of agro-waste.  相似文献   

4.
The effects of a new axial impeller (HTPG4) on oxygen volumetric transfer coefficient, K L a, and xylanase production by Penicillium canescens 10-10c were studied and compared for dual-impeller systems, one with one DT4 impeller below and one HTPG4 above (DT4-HTPG4) and one with two DT4 (DT4-DT4) impellers, in a 5-L bioreactor. The volumetric coefficient of oxygen transfer was measured in culture medium using a gassing-out method at different gassing rates and agitation speeds. We observed that the DT4-HTPG4 combination provided better K L a performance than the DT4-DT4 combination. The two combinations were also tested for their influence on xylanase production by a filamentous microorganism; P. canescens 10-10c. These experiments demonstrated that the DT4-HTPG4 combination impeller enhanced enzyme production up to 23% compared with the DT4-DT4 combination at an aeration rate of 1 vvm and an agitation speed of 600 rpm. The main cause for this difference is thought to be a higher shear stress generated by the DT4-DT4 combination, which damages the mycelium of P. canescens and decreases xylanase production.  相似文献   

5.
Of the many reported applications for xylanase, its use as a food supplement has played an important role for monogastric animals, because it can improve the utilisation of nutrients. The aim of this work was to produce xylanase by extractive fermentation in an aqueous two-phase system using Aspergillus tamarii URM 4634, increasing the scale of production in a bioreactor, partially characterising the xylanase and evaluating its influence on monogastric digestion in vitro. Through extractive fermentation in a bioreactor, xylanase was obtained with an activity of 331.4 U mL?1 and 72 % yield. The xylanase was stable under variable pH and temperature conditions, and it was optimally active at pH 3.6 and 90 °C. Xylanase activity potentiated the simulation of complete monogastric digestion by 6 %, and only Mg2+ inhibited its activity. This process provides a system for efficient xylanase production by A. tamarii URM 4634 that has great potential for industrial use.  相似文献   

6.
Fungi are well known for their ability to excrete enzymes into the environment. The aim of this work was to evaluate xylanase production by fungi isolated from soil. One hundred and thirty-six fungal isolates were screened for xylanase production. Two xylanase producing isolates, FSS117 and FSS129, were identified on the basis of analyses of 5,8S gene sequencing. The closest phylogenetic neighbors according to 5,8S gene sequence data for the two isolates were Aspergillus tubingensis and Aspergillus terreus, respectively. When birchwood xylan or corn cob hulls was used as a substrate for 5 days under submerged culture cultivation, xylanase production from A. terreus FSS129 was 113 and 174 IU ml?1, respectively. The pH and temperature for optimum xylanase activity were 8 and 65?ºC.  相似文献   

7.
Xylanases have raised interest because of their potential applications in various industrial fields, including the pulp and paper industries, bioethanol production, and the feed industry. In bioethanol production from lignocellulosic compounds, xylanase can improve the hydrolysis of cellulose into fermentable sugars, since the xylan restricts the cellulases from acting efficiently. In this work, a new thermophilic Streptomyces sp. was selected for its ability to produce xylanase. Carbon source selection is an important factor in the production of hemicellulases. The highest activity was obtained when Streptomyces sp. I3 was grown in the presence of wheat bran. Xylanase activity was partially characterized concerning the effect of pH and temperature on activity and thermostability, and the effects of different metal ions were also tested. The pH and temperature profile showed optimal activity at pH 6.0/70 °C. Zymogram analysis showed multiple xylanases (39, 21, 18, and 17 kDa). Xylanases studied in this work are thermophilic, thermostable, and active in a wide pH range; they have potential to be used in the development of new processes of biotechnological interest.  相似文献   

8.
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by β-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 °C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0–5.5. They were stable in the pH range 5.0–10.0 and 5.5–8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 °C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 °C.  相似文献   

9.
A gene encoding an extracellular xylanase was cloned from a compost metagenomic library. The xylanase gene, xyn10J, was 1,137 bp in length and was predicted to encode a protein of 378 amino acid residues with a putative signal peptide of 27 amino acid residues. The molecular mass of the mature Xyn10J was calculated to be 39,882 Da with a pI of 6.09. Xyn10J had a motif GVKVHFTEMDI characteristic of most members of glycosyl hydrolase family 10. The amino acid sequence of Xyn10J showed 60.0% identity to that of XynH, a xylanase from an uncultured soil bacterium and 55% identity to XylC of Cellvibrio mixtus. Site-directed mutagenesis of the expected active site based on the sequence analysis indicated that an aspartic acid residue (Asp207), in addition to the identified catalytic residues Glu165 and Glu270, plays a crucial role for the catalytic activity. The purified Xyn10J had a mass of about 40 kDa and was optimally active at pH 7.0 and 40 °C. Xyn10J hydrolyzed beechwood xylan > birchwood xylan > oat spelt xylan > arabinoxylan. Xyn10J hydrolyzed xylotetraose and xylohexaose exclusively to xylobiose, xylopentaose, and xylotriose mainly to xylobiose with transglycosylation activity. The saccharification of reed (Phragmites communis) powder by commercial enzymes was significantly increased by the addition of a small amount of Xyn10J to the commercial preparation. Xyn10J is the first xylanase screened directly from a compost metagenomic library, and the enzyme has the potential to be used in the conversion of biomass to fermentable sugars for biofuel production.  相似文献   

10.
Xylans are major hemicellulose components of plant cell wall which can be hydrolyzed by xylanolytic enzymes. Three forms of endo-β-1,4-xylanases (XynSW1, XynSW2A, and XynSW2B) produced by thermotolerant Streptomyces sp. SWU10 have been reported. In the present study, we described the expression and characterization of the fourth xylanase enzyme from this bacteria, termed XynSW3. The gene containing 726 bp was cloned and expressed in Escherichia coli. The recombinant enzyme (rXynSW3) was purified from cell-free extract to homogeneity using Ni-affinity column chromatography. The apparent molecular mass of rXynSW3 was 48 kDa. Amino acid sequence analysis revealed that it belonged to a xylanase of glycoside hydrolase family 11. The optimum pH and temperature for enzyme activity were 5.5–6.5 and 50 °C, respectively. The enzyme was stable up to 40 °C and in wide pH ranges (pH 0.6–10.3). Xylan without arabinosyl side chain is the most preferable substrate for the enzyme. By using birch wood xylan as substrate, rXynSW3 produced several oligosaccharides in the initial stage of hydrolysis, and their levels increased with time, demonstrating that the enzyme is an endo-acting enzyme. The major products were xylobiose, triose, and tetraose. The rXynSW3 can be applied in several industries such as food, textile, and biofuel industries, and waste treatment.  相似文献   

11.
Endo-β-1,4-xylanase derived from Trichoderma reesei was covalently immobilized on poly (ethylene glycol) methyl ether 5000 (mPEG5000), and the resulting immobilized enzyme had a residual activity of 72.4 % with 82.9 % of PEGylated amino groups. Compared with the free enzyme, the immobilized xylanase was stable at pH values in the range of 4.0–6.0 and temperatures in the range of 50–65 °C. A self-extractive bioconversion system composed of immobilized xylanase, mPEG5000, and sodium citrate was used to produce xylo-oligosaccharides and provided a better distribution of the xylo-oligosaccharides than the free enzyme. Furthermore, the immobilized xylanase could be effectively recovered in situ following the hydrolysis reaction.  相似文献   

12.
Trichoderma atroviride 676 was studied to evaluate its efficiency in the production of some lignocellulolytic enzymes, using lignocellulosic residual biomass. Best results were obtained when 3.0 % (w/v) untreated sugarcane bagasse was used (61.3 U mL?1 for xylanase, 1.9 U mL?1 for endoglucanase, 0.25 U mL?1 for FPase, and 0.17 U mL?1 for β-glucosidase) after 3–4 days fermentation. The maximal enzymatic activity for endoglucanase, FPase, and xylanase were observed at 50–60 °C and pH?4.0–5.0, whereas thermal stability at 50 °C (CMCase and FPase) or 40 °C (xylanase) was obtained after 8 h. Zymograms have shown two bands of 104 and 200 kDa for endoglucanases and three bands for xylanase (23, 36, and 55.7 kDa). The results obtained with T. atroviride strain 676 were comparable to those obtained with the cellulolytic strain Trichoderma reesei RUT-C30, indicating, in the studied conditions, its great potential for biotechnological application, especially lignocellulose biomass hydrolysis.  相似文献   

13.
Penicillium occitanis xylanase 2 expressed with a His-tag in Pichia pastoris, termed PoXyn2, was immobilized on nickel-chelate Eupergit C by covalent coupling reaction with a high immobilization yield up to 93.49 %. Characterization of the immobilized PoXyn2 was further evaluated. The optimum pH was not affected by immobilization, but the immobilized PoXyn2 exhibited more acidic and large optimum pH range (pH 2.0–4.0) than that of the free PoXyn2 (pH 3.0). The free PoXyn2 had an optimum temperature of 50 °C, whereas that of the immobilized enzyme was shifted to 65 °C. Immobilization increased both pH stability and thermostability when compared with the free enzyme. Time courses of the xylooligosaccharides (XOS) produced from corncob xylan indicated that the immobilized enzyme tends to use shorter xylan chains and to produce more xylobiose and xylotriose initially. At the end of 24-h reaction, XOS mixture contained a total of 21.3 and 34.2 % (w/w) of xylobiose and xylotriose with immobilized xylanase and free xylanase, respectively. The resulting XOS could be used as a special nutrient for lactic bacteria.  相似文献   

14.
This study is related to the isolation of fungal strain for xylanase production using agro-industrial residues. Forty fungal strains with xylanolytic potential were isolated by using xylan agar plates and quantitatively screened in solid-state fermentation. Of all the tested isolates, the strain showing highest ability to produce xylanase was assigned the code Aspergillus niger LCBT-14. For the enhanced production of the enzyme, five different fermentation media were evaluated. Out of all media, M4 containing wheat bran gave maximum enzyme production. Effect of different variables including incubation time, temperature, pH, carbon and nitrogen sources has been investigated. The optimum enzyme production was obtained after 72 h at 30°C and pH 4. Glucose as a carbon source while ammonium sulphate and yeast extract as nitrogen sources gave maximum xylanase production (946 U/mL/min). This study was successful in producing xylanase by A. niger LCBT-14 economically by utilising cheap indigenous substrate.  相似文献   

15.
Despite their potential biotechnological applications, cold-active xylanolytic enzymes have been poorly studied. In this work, 38 fungi isolated from marine sponges collected in King George Island, Antarctica, were screened as new sources of cold-active xylanases. All of them showed xylanase activity at 15 and 23 °C in semiquantitative plate assays. One of these isolates, Cladosporium sp., showed the highest activity and was characterized in detail. Cladosporium sp. showed higher xylanolytic activity when grown on beechwood or birchwood xylan and wheat bran, but wheat straw and oat bran were not so good inducers of this activity. The optimal pH for xylanase activity was 6.0, although pH stability was slightly wider (pH 5–7). On the other hand, Cladosporium sp. showed high xylanase activity at low temperatures and very low thermal stability. Interestingly, thermal stability was even lower after culture media were removed and replaced by buffer, suggesting that low molecular component(s) of the culture media could be important in the stabilization of cold-active xylanase activity. To the best of our knowledge, this study is the first report on extracellular xylanase production by fungi associated with Antarctic marine sponges.  相似文献   

16.
A newly isolated thermophilic fungal strain from Tunisian soil samples was identified as Talaromyces thermophilus and was selected for its ability to produce extracellular hemicellulases when grown on various lignocellulosic substrates. Following the optimization of carbon source, nitrogen source, and initial pH of the growth medium in submerged liquid cultures, yields as high as 10.00?±?0.15 and 0.21?±?0.02 U/ml were obtained for xylanase and β-xylosidase, respectively. In fact, wheat bran was found to be a good inducer of hemicellulase enzymes, mainly β-xylosidase. The optimal temperature and pH of the xylanase activity were 75°C and 8.0, respectively. This enzyme exhibited a remarkable stability and retained 100% of its original activity at 50°C for 7 days at pH?7.0–8.0. The half-lives of the enzyme were 4 h at 80°C, 2 h at 90°C, and 1 h at 100°C. T. thermophilus could therefore be considered as a satisfactory and promising producer of thermostable xylanases. Crude enzyme of T. thermophilus rich in xylanase and β-xylosidase was established for the hydrolysis of lignocellulosic materials as wheat bran.  相似文献   

17.

To improve xylanase productivity fromPenicillium canescens 10–10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h-1) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade’s impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade’s impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold.

  相似文献   

18.
With the biggest cavity in the cucurbit[n]urils (CB[n]s) family, CB[10] has shown its unique molecular recognition properties. This review gives a brief summary of the research progresses in the CB[10]-based chemistry, involving its purification and applications in fields such as molecular recognition and molecular assembly.  相似文献   

19.
To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1T isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca+2 enhances greatly the relative activity to 151.3 %; whereas Hg2+ inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process.  相似文献   

20.
Aspergillus tamarii has been found to grow well and to produce high cellulase-free xylanase activity when growing on corn cob powder as the principal substrate. Maximum xylanase production (285-350 U/mL) was obtained when the strain was grown in media supplemented with high corn cob concentration (5-8%, w/v) for 5 d. The presence of constitutive levels of xylanase was detected in cultures with glucose as the carbon source. Zymogram analysis for detection of xylanase activity after electrophoresis in polyacrylamide gels has shown thatA. tamarii produces at least two xylanases under the conditions utilized. The hydrolysis patterns of xylan demonstrated that the xylanases were endoenzymes, yielding mainly xylobiose, xylotriose, and higher xylooligosaccharides with traces of xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号