首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Trimeric 2′,5′-linked adenylates incorporating deoxyribosides and arabinoside of adenine in the 2′-end were synthesized by the phosphotriester approach using quinoline-8-sulfonyl nitrotriazoline as an effective condensing agent.  相似文献   

2.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

3.
Bromination of endo-ethenotetrahydrothebaine derivatives having a pyrrolidine ring fused at the C7-C8 bond, namely 1′-substituted 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-diones, 1′-aryl-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinans, and 4,5α-epoxy-6α,14-etheno-2′α-hydroxy-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morpphinan-5′-one, with molecular bromine in formic acid smoothly afforded the corresponding 1-bromo derivatives. Iodination of 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-morphinan-2′,5′-dione with iodine(I) chloride gave 4,5α-epoxy-6α,14-etheno-1-iodo-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-dione. The resulting 1-halo derivatives were brought into the Heck reaction with acrylic acid esters to obtain 1-[(E)-2-(alkoxycarbonyl)ethenyl]-substituted compounds. Demethylation of the 6-methoxy group in 1-bromo-endo-ethenotetrahydrothebaines was accomplished using boron(III) bromide in chloroform.  相似文献   

4.
While oxidation of 5,5′,15,15′-tetramesityl-10-10′-linked 3NH-corrole dimer with DDQ gave the corresponding triply linked 2NH-corrole tape, the use of an equimolar amount of p-chloranil as a milder oxidant resulted in the formation of a 10-10′-linked neutral 2NH-corrole radical dimer as a stable product. The stability of this peculiar product is ascribed largely to strong antiferromagnetic interaction of the two spins. Further oxidation of this diradical produced corrole tape, suggesting its involvement as a reaction intermediate to the corrole tape. Oxidation of 10-10′-linked bis-pyridine-coordinated CoIII corrole dimer with DDQ produced a cobalt corrole radical dimer and a doubly linked corrole dimer both as stable compounds bearing pyridine and cyanide axial ligands. This type of oxidative transformation involving neutral diradical intermediates is a unique reaction mechanism specific for corrole dimers.  相似文献   

5.
Non-enzymatic oligomerization of activated ribonucleotides leads to ribonucleic acids that contain a mixture of 2′,5′- and 3′,5′-linkages, and overcoming this backbone heterogeneity has long been considered a major limitation to the prebiotic emergence of RNA. Herein, we demonstrate non-enzymatic chemistry that progressively converts 2′,5′-linkages into 3′,5′-linkages through iterative degradation and repair. The energetic costs of this proofreading are met by the hydrolytic turnover of a phosphate activating agent and an acylating agent. With multiple rounds of this energy-dissipative recycling, we show that all-3′,5′-linked duplex RNA can emerge from a backbone heterogeneous mixture, thereby delineating a route that could have driven RNA evolution on the early earth.  相似文献   

6.
The 5′-amino-5′-deoxy-2′,3′-O-isopropylideneadenosine ( 4 ) was obtained in pure form from 2′,3′-O-isopropylideneadenosine ( 1 ), without isolation of intermediates 2 and 3 . The 2-(4-nitrophenyl)ethoxycarbonyl group was used for protection of the NH2 functions of 4 (→7) . The selective introduction of the palmitoyl (= hexadecanoyl) group into the 5′-N-position of 4 was achieved by its treatment with palmitoyl chloride in MeCN in the presence of Et3N (→ 5 ). The 3′-O-silyl derivatives 11 and 14 were isolated by column chromatography after treatment of the 2′,3′-O-deprotected compounds 8 and 9 , respectively, with (tert-butyl)dimethylsilyl chloride and 1H-imidazole in pyridine. The corresponding phosphoramidites 16 and 17 were synthesized from nucleosides 11 and 14 , respectively, and (cyanoethoxy)bis(diisopropylamino)phosphane in CH2Cl2. The trimeric (2′–5′)-linked adenylates 25 and 26 having the 5′-amino-5′-deoxyadenosine and 5′-deoxy-5′-(palmitoylamino)adenosine residue, respectively, at the 5′-end were prepared by the phosphoramidite method. Similarly, the corresponding 5′-amino derivatives 27 and 28 carrying the 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus, were obtained. The newly synthesized compounds were characterized by physical means. The synthesized trimers 25–28 were 3-, 15-, 25-, and 34-fold, respectively, more stable towards phosphodiesterase from Crotalus durissus than the trimer (2′–5′)ApApA.  相似文献   

7.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

8.
3-Aroyl-1H-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with N,N′-dihydroxycyclohexane-1,2-diamine to give 3-aroyl-1′,4,4′-trihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrole-2,2′-quinoxaline]-3′,5(1H,4′H)-diones which underwent rearrangement into 1′-aroyloxy-4,4′-dihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrolidine-2,2′-quinoxaline]3′,4,5(4′H)-triones via [1,4]-migration of the aroyl group. The product structure was proved by X-ray analysis.  相似文献   

9.
10.
The synthesis of 2-(p-chlorophenyl)-5-[1′,2′,3′,4′,5′-penta-O-benzoyl-D-galactopentitol-1-yl]-1,3,4-oxadiazole is described. Its debenzoylation gave an equilibrium mixture of the 1,3,4-oxadiazole derivative without protection of the hydroxyl group and the N-benzoyl-D-galactono-1,4-lactonehydrazone. A similar equilibrium was observed by debenzoylation of 2-phenyl-5-[1′,2′,3′,4′,5′-penta-O-benzoyl-D-galactopentitol-1-yl]-1,3,4-oxadiazole. The 1H, 13C nmr and ms spectra of these compounds are presented.  相似文献   

11.
T. Sasaki  K. Minamoto  K. Hattori 《Tetrahedron》1974,30(16):2689-2694
For the synthesis of y 1-(3′-deoxy-β-D-glycero-pentofuran-2′-ulosyl)uracil (16), the precursor, 5′-O-benzoyl derivative (2),2 was elaborated in a variety of ways. 1-(5′-O-Benzoyl-3′-O-tosyl-β-D- lyxofuranosyl)uracil (4)2 was benzoylated to N3-benzoyl-1-(2′,5′-di-O-benzoyl-3′-O-tosyl-β-D- lyxofuranosyl)uracil (5), which directly yielded 2 on treatment with sodium benzoate. 1-(3′,5′-Di-O- benzoyl-2′-O-tosyl-β-D-lyxofuranosyl)uracil (8) and its 3′,5′-O-isopropylidene analog (10) resisted elimination reactions, thus proving absolute selectivity in the elimination of the derivatives of 1-β-D- lyxofuranosyl-uracil. Seeking a more economical path to 2, 1-(5′-O-benzoyl-β-D-lyxofuranosyl)uracil (11) was first benzoylated to give 2′,5′-di-O-benzoate (12), accompanied by 3′,5′-di- and 2′,3′,5′-tri-O- benzoate. Mesylation of the major product (12) gave 1-(2′,5′-di-O-benzoyl-3′-O-mesyl-β-D- lyxofuranosyl)uracil (15), which, on treatment with sodium benzoate, gave 2 in an highly improved yield. Basic hydrolysis on 2 gave compound 16.  相似文献   

12.
3-Aroyl-1H-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with ethyl (2Z)-(3,3-dimethyl-8-oxo-2-azaspiro[4.5]deca-6,9-dien-1-ylidene)acetate to give ethyl 6′-aryl-2′-(2-hydroxyphenyl)-11′,11′-dimethyl-3′,4,4′,13′-tetraoxospiro[2,5-cyclohexadiene-1,9′-(7′-oxa-2′,12′-diazatetracyclo[6.5.1.01,5.08,12]tetradec-5′-ene)]-14′-carboxylates whose structure was confirmed by X-ray analysis. The products may be regarded as bridged analogs of pyrrolizidine alkaloids, 7′-oxa-2′,12′-diazatetracyclo[6.5.1.01,5.08,12]tetradecanes.  相似文献   

13.
ABSTRACT

Starting from 3,4-di-O-acetyl-L-rhamnal (6) and thymine (7) the unsaturated nucleosides 1-(2′,3′,6′-trideoxy-4′-O-acetyl-α- and β-L-erythro-hex-2′-enopyranosyl)-thymine (8a and 8b) were prepared in anomerically pure form. In solution 8a was shown to be present in the 5 H o and 0 H 5 conformations, whereas the predominant conformation of 8b was 5 H o. Chemical transformation of 8a and 8b led to the saturated nucleosides 1-(2′,3′,6′-trideoxy-α- and β-L-erythro-hexopyranosyl)thymine (10a and 10b, respectively), which were converted into 1-(4′-azido-2′,3′,4′,6′-tetradeoxy-α- and β-L-threo-hexopyranosyl)thymine (12a and 12b). Preliminary biological studies showed that 9b was inactive against the HIV-1 and HIV-2 viruses.  相似文献   

14.
On the basis of the data obtained from 13C NMR spectra of 8,2′-S-cycloadenosine 3′,5′-cyclic phosphate and other nucleoside 3′,5′-cyclic phosphate analogues, it is suggested that the published assignments of the C-3′ and C-4′ signals in nucleoside 3′,5′-cyclic phosphates should be reversed. According to the revised assignments, C-4′, which is fixed very closely to the diesterified phosphate group is markedly shielded (?12.5 to ?15 ppm), and the C-3′ signal shows a downfield shift (+6 to +8 ppm) which is comparable to that for the C-5′ signal, for all compounds so far measured when compared with the chemical shifts for the corresponding nucleosides. The 3′,5′-cyclic phosphates of thymidine and 8,2′-S-cycloadenosine, which have no α-OH group on C-2′, show similar chemical shift changes for the corresponding sugar carbons which are different from those observed for ribonucleoside derivatives.  相似文献   

15.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

16.
Di-, tri- and tetramers of β-(1→3)-linked N-acetyllactosamine residues have been synthesised as their methyl glycosides, to be used in ITC binding studies to various galectins. The synthetic strategy involves two types of regioselective glycosylations: couplings of a galactosyl donor to 3,4-diol N-tetrachlorophthalimido glucose acceptors to give the lactosamine monomer building blocks, and subsequent formation of the oligomers through consecutive couplings of lactosamine donors to 2′,3′,4′-lactosamine acceptors, with high selectivity for the desired products.  相似文献   

17.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Five previously undescribed trimetrexate analogues with bulky 2′-bromo substitution on the phenyl ring were synthesized in order to assess the effect of this structure modification on dihydrofolate reductase inhibition. Condensation of 2-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]-1,l-dicyanopropene with sulfur in the presence of N,N-diethylamine afforded 2-amino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methyl-thiophene-3-carbonitrile ( 15 ) and 2-amino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethyl]thiophene-3-car-bonitrile ( 16 ). Further reaction with chloroformamidine hydrochloride converted 15 and 16 into 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methylthieno[2,3-d]pyrimidine ( 8a ) and 2,4-diamino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethylthieno[2,3-d]pyrimidine ( 12 ) respectively. Other analogues, obtained by reductive coupling of the appropriate 2,4-diaminoquinazoline-6(or 5)-carbonitriles with 2-bromo-3,4,5-trimethoxyaniline, were 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)-5-chloro-quinazoline ( 9a ), 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 10 ), and 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 11 ). Enzyme inhibition assays revealed that space-filling 2′-bromo substitution in this limited series of dicyclic 2,4-diaminopyrimidines with a 3′,4′,5′-trimethoxyphenyl side chain and a CH2, CH2CH2, or CH2NH bridge failed to improve species selectivity against either P. carinii or T. gondii dihydrofolate reductase relative to rat liver dihydrofolate reductase.  相似文献   

19.
Isomerization at the Complexation of 3-Acetyltetramic Acid: Structure and Magnetic Properties of the CuII- and NiII-Complex of 2,7-Bis (1′, 5′, 5′ -trimethylpyrrolidin-2′,4′ -dion-3′ -yl)-3,6-diazaocta-2,6-dien 2,7-Bis(1′, 5′, 5′ -trimethylpyrrolidin-2′, 4′ -dion-3′ -yl)-3,6-diazaoctadien formes CuII and NiII complexes with different constitutions (because of the Z/E isomerization). Results of X-ray analysis of N,N′ -ethylenbis(1′, 5′, 5′ -trimethylpyrrolidin-2′, 4′ -dion-3′ -acetiminato)nickel(II) 1 respectively -copper(II) 2 shows, that the complexing agent in 1 occurs in the E-form, whereas the ligand of the CuII complex forms the Z-form. Magnetic susceptibility and shift effects of the 13C-NMR signals point to a weak paramagnetism of the NiII complex. ESR-spectra are obtained from 2 only. Furthermore, the CuII complex reduces the relaxation times T1 and T2 of 1H and 17O nuclei spins from water. From the temperature dependence of the shortening of the relaxation times an activation energy is calculated which describes the reorientation of the copper complex in the “water matrix”.  相似文献   

20.
The convergent syntheses of 3-deazapurine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides, including 3-deaza-2′-deoxyadenosine ( 1a ) and 3-deaza-2′,3′-dideoxyadenosine ( 1b ) is described. The 4-chloro-lH-imidazo[4,5-c]pyridinyl anion derived from 5 was reacted with either 2′-deoxyhalogenose 6 or 2′,3′-dideoxyhalogenose 10 yielding two regioisomeric (N1 and N3) glycosylation products. They were deprotected and converted into 4-substituted imidazo[4,5-c]pyridine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides. Compounds 1a and 1b proved to be more stable against proton-catalyzed N-glycosylic bond hydrolysis than the parent purine nucleosides and were not deaminated by adenosine deaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号