首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of polymers of the type (-Cz-C[triple chemical bond]C-PtL(2)-C[triple chemical bond]C-Cz-X-)(n) along with the corresponding model compounds (Ph-PtL'(2)-C[triple chemical bond]C-Cz)(2)-X-, where Cz=3,3'-carbazole, X=nothing, Cz, or F (2,2'-fluorene), L=PBu(3), and L'=PEt(3) are reported. The electronic spectra (absorption, excitation, emission, and ns-transient spectra) and the photophysics of these species in 2-methyltetrahyrofuran (2MeTHF) at 298 and 77 K are presented. Evidence for singlet electron and triplet energy transfer from the Cz chromophore to the F moiety are provided and discussed in detail. The rate for electron transfer is very fast (>4 x 10(11) s(-1)), whereas that for triplet-triplet energy transfer is much slower (approximately 10(3) s(-1)). This work represents a very rare example of studies that address electronic communication in the backbone of a conjugated organometallic polymer.  相似文献   

2.
Pi-conjugated polymers and oligomers show charge transfer (CT) absorption bands when mixed with electron acceptors in chloroform solution. This is attributed to the formation of (ground state) donor-acceptor complexes in solution. By varying the concentration of the donor and acceptor, the extinction coefficient for the CT absorption and the association constant of donor and acceptor are estimated. The spectral position of the CT bands correlates with the electrochemical oxidation potential of the pi-conjugated donor and the reduction potential of the acceptor.  相似文献   

3.
4.
A great deal of research has concentrated on long range electron and energy transport in transition metal-based systems, including molecular donor-acceptor assemblies, electron and energy transfer cascades, dendrimers, and derivatized polymer systems. In an effort to improve efficiencies for electron and energy transport over large distances, several groups have now turned to conjugated systems. Several challenges exist to incorporating conducting materials/polymers in the study of photoinduced electron and energy transfer: solubility and processibility of the materials, thermal stability and limitations on direct spectroscopic characterization due to band gap absorptions. We have prepared a new series of conducting materials that provides for direct incorporation of chromophores and electrophores within the backbone of a conducting polymer. Energy transfer dynamics between conducting polymer bridges and porphyrin or metal-to-ligand charge transfer (MLCT) chromophores can be controlled through intermolecular interactions in solid vs solution samples. We have also developed a methodology to incorporate transmissive benzothiophene-type polymers such as polyisothianaphthene (PITN) within a copolymer assembly. These new materials are now being used to investigate long range electronic coupling and have potential applications that range from artificial photosynthesis to light emitting diodes.  相似文献   

5.
The gas-phase internal elimination (E(i)) reaction of the sulfoxide (-SO-CH(3)) precursors of ethylene and model oligomers of PPV and PITN has been investigated by means of Hartree-Fock, M?ller-Plesset (second and fourth order), and Density Functional Theory (B3LYP, MPW1K) calculations. Considerable differences between the obtained ground state and transition state geometries and the calculated activation energies are observed from one approach to the other, justifying first a careful calibration against the results of a benchmark CCSD(T) study of the E(i) reaction leading to ethylene. In comparison with the CCSD(T) results, as well as with available experimental data, DFT calculations along with the MPW1K functional are found to be a very appropriate choice for describing the E(i) pathway. The leading conformations of the precursors, the relevant transition state structures, and the energy barriers encountered along the lowest energy path to unsubstituted, alpha and beta chloro-, methoxy-, and cyano-substituted ethylene, styrene, stilbene in its cis and trans forms, and at last trans-biisothianaphthene have therefore been identified and characterized in detail employing DFT (MPW1K). Depending on the substituents attached to the C(alpha) and C(beta) atoms, different reaction mechanisms are observed.  相似文献   

6.
Phenylene oligomers represent a borderline case between very strongly π-conjugated molecular wires such as oligo-p-phenylene vinylenes and saturated molecular bridges. Even subtle chemical modifications of phenylene oligomers can therefore have a strong impact on charge transfer rates and mechanisms. On the basis of recently published selected case studies, this tutorial review discusses the key factors that affect charge transfer kinetics in phenylene oligomers with particular focus on the role of donor-bridge energy matching. Selected examples of triplet-triplet energy transfer reactions across phenylene oligomers are also discussed.  相似文献   

7.
Oligomers containing 2,5-thienylene and 2,5-furanylene units were synthesized by NiCl2 (dppp) (dppp = Ph2PCH2CH2CH2PPh2) coupling of Grignard compounds with the appropriate bromothiophene or bromofuran; UV and electrochemical data are given and discussed in terms of number and kind of heterolene units in the oligomeric species.  相似文献   

8.
The design of new types of metal-organic networks and the search for unusual crystal architecture represents an important task for modern inorganic and materials chemistry research. A group of new monosubstituted phenylcyanoximes, containing F, Cl, and Br atoms at the 2, 3, or 4 positions, were synthesized using the high yield nitrosation reaction with CH3-ONO and were spectroscopically (1H NMR, 13C NMR, UV-visible, IR, mass spectrometry) and structurally characterized. Results of X-ray analysis revealed nonplanar trans-anti geometry for 2-chlorophenyl(oximino)acetonitrile, H(2Cl-PhCO); a nonplanar anti configuration for 4-chlorophenyl(oximino)acetonitrile, H(4Cl-PhCO); and planar cis-syn geometry for 3-fluorophenyl(oximino)acetonitrile, H(3F-PhCO). All arylcyanoximes undergo deprotonation in solutions with the formation of colored anions exhibiting pronounced negative solvatochromism in a series of polar protic and aprotic solvents. Nine thallium(I) cyanoximates were obtained using the reaction between hot (approximately 95 degrees C) aqueous solutions of Tl2CO3 and solid powdery monohalogenated arylcyanoximes HL. Crystal structures of two Tl(I) cyanoximates [Tl(2Cl-PhCO) and Tl(4Br-PhCO)] contained centrosymmetric dimeric units (TlL)2 that are connected to a coordination polymer by means of an oxygen atom of the oxime group of the neighboring molecule. Cyanoxime anions act as bridging ligands in both structures where the polymeric motif consists of double-stranded Tl-O chains interconnected with the formation of zigzagging Tl2O2 planar rhombes. Thallium atoms form infinite linear arrays with close intermetallic separations. The nearest Tl(I)...Tl(I) distances are 3.838 and 4.058 angstroms in the Tl(2Cl-PhCO) and Tl(4Br-PhCO) structures, respectively, close to that in metallic thallium (3.456 angstroms). Monosubstituted phenyl groups are well aligned in pi-stacking columns that are perpendicular to the array of Tl(I) atoms and stabilize formed structures. Coordination polyhedrons of thallium(I) in these complexes represent distorted trigonal pyramids with stereoactive lone pair.  相似文献   

9.
A new nonempirical approach was proposed for the construction of the pseudopotential of valence electrons in molecules. The Green function method, starting from the condition of calibration invariance, gave a new integral equation for the determination of the pseudopotential and an analysis of its solution was carried out.Odessa Technological Institute. Translated from Zhurnal Strukturnoi Khimii, Vol. 30, No. 6, pp. 3–6, November–December, 1989.  相似文献   

10.
11.
Organic mixed ionic-electronic conductors (OMIECs) are a developing class of organic electronic materials distinguished by their dual modes of conduction. The side-chains of OMIEC polymers are responsible for forming a percolating electrolyte phase that mediates doping and ionic conduction. Despite this critical role, design rules for OMIEC side-chains are still nascent and their effects on OMIEC morphology and charge transport have yet to be systematically studied. Here we perform the first dedicated coarse-grained molecular dynamics study of OMIECs where the side-chain identity and distribution are systematically varied using a random copolymer architecture. The simulations recapitulate the nonlinear progression of the morphology from an interfacially gated electrolyte when large fractions of hydrophobic side-chains are incorporated, to an electrolyte swelled morphology after crossing a threshold of approximately 40% polar side-chains. Kinetic Monte Carlo simulations were used to characterize the charge transport behaviors in these systems, revealing two interesting maxima in the mobility at 40% and 100% polar side-chain fractions, respectively. With respect to maximizing the charge mobility and conductivity, these simulations suggest that a uniform hydrophilic side-chain distribution is optimal and that there are few advantages to using mixed side-chains in a random copolymer architecture. These results also suggest several alternative side-chain engineering strategies for optimizing OMIEC performance.  相似文献   

12.
The high-field/high-frequency (5 T, 140 GHz) saturation transfer electron paramagnetic resonance (ST-EPR) method was used for the study of superslow librational macromolecular dynamics in various conducting polymers. It was shown that the increase of the electron precession frequency allows separate determination of spin relaxation and dynamics differently affecting effective ST-EPR spectra. Higher microwave frequency increases significantly the spectral resolution of the method and its sensitivity to the anisotropic macromolecular motion in conducting polymers. This broadens the interval of correlation time measured, thereby extending the slow-motion limit for ST-EPR by at least 2 orders of magnitude compared with convenient waveband EPR.  相似文献   

13.
Macromolecular radicals are receiving growing interest as functional materials in energy storage devices and in electronics. With the need for enhanced conductivity, researchers have turned to macromolecular radicals bearing conjugated backbones, but results thus far have yielded conjugated radical polymers that are inferior in comparison to their non-conjugated partners. The emerging explanation is that the radical unit and the conjugated backbone (both being redox active) transfer electrons between each other, essentially “quenching” conductivity or capacity. Here, the internal charge transfer process is quantified using a polythiophene loaded with 0, 25, or 100% nitroxide radicals (2,2,6,6-tetramethyl-1-piperidinyloxy [TEMPO]). Importantly, deconvolution of the cyclic voltammograms shows mixed faradaic and non-faradaic contributions that contribute to the internal charge transfer process. Further, mixed ion-electron transfer is determined for the 100% TEMPO-loaded conjugated radical polymer, from which it is estimated that one triflate anion and one propylene carbone molecule are exchanged for every electron. Although these findings indicate the reason behind their poor conductivity and capacity, they point to how these materials might be used as voltage regulators in the future.

Conjugated radical polymers can exhibit internal electron transfer depending on the radical loading.  相似文献   

14.
A series of platinum-acetylide homo- and copolymers was prepared and characterized by using photophysical methods. The polymers feature repeat units of the type [trans-Pt(PBu3)2(-CC-Ar-CC-)], where Ar = 1,4-phenylene (P) or 2,5-thienylene (T). The properties of homopolymers that contain only the 1,4-phenylene or 2,5-thienylene repeat units were compared with those of random copolymers having the structure -[-(Pt(PBu3)2(-CC-T-CC-))x-(Pt(PBu3)2(-CC-P-CC-))(1-x)-)] where x = 0.05, 0.15, and 0.25. Absorption and photoluminescence spectroscopy demonstrates that the singlet and triplet excitations localized on 1,4-phenylene units are higher in energy relative to those localized on the 2,5-thienylene units. The mechanism and dynamics of intrachain triplet energy transfer from 1,4-phenylene to the 2,5-thienylene repeats were explored in the copolymers. Photoluminescence and nanosecond transient absorption spectroscopy indicate that at room temperature P --> T energy transfer is efficient and rapid (k > 10(8) s(-1)), even in the copolymer that contains only 5% 2,5-thienylene repeat units. At 77 K, steady-state and time-resolved photoluminescence spectroscopy reveals that triplet energy transfer is much less efficient and a fraction of the triplet excitations is "trapped" on the high-energy 1,4-phenylene units. Intrachain energy transfer is believed to occur by two mechanisms, one involving P --> T singlet energy transfer followed by intersystem crossing, whereas the other involves intersystem crossing prior to P --> T triplet energy transfer. The relationship between the observed energy transfer efficiencies and mechanisms in the copolymers is discussed.  相似文献   

15.
16.
Silylene-spaced donor-acceptor divinylarene copolymers are synthesized by hydrosilylation of bisalkynes 7 with bisvinylsilanes 3; efficient intrachain energy transfer between donor-acceptor chromophores is observed.  相似文献   

17.
The relationship between electronic structure and chemical stability is discussed for three different classes of low band-gap oligomers and polymers. In oligo- and poly[n]acenes as well as in poly-(arylenemethide)s, the low band-gap character is connected with a high chemical reactivity due to an energetically favored rearomatization of olefinic or quinonoid substructures, respectively. For double-stranded oligo- and poly(rylene)s, the stability is dramatically increased. Therefore, rylenes appear especially promising in the field of low band-gap materials.  相似文献   

18.
The reaction of Cp(dppe)FeI with the ligands 2,2′- and 4,4′-dithiobispyridine (S2(Py)2) give the mononuclear or binuclear complexes of the type [Cp(dppe)Fe-S2(Py)2]PF6, [Cp(dppe)Fe---SPy]PF6 or [{Cp(dppe)Fe}2-μ-SPy](PF6)2 depending on the reaction condition. Reaction of Cp(dppe)FeI with dithiobispyridines in presence of TlPF6 as halide abstractor and using CH2Cl2 as a solvent gives the complexes [Cp(dppe)Fe-4,4′-S2(Py)2)2]PF6 (1) and [CpFe(dppe)-2,2′-S2(Py)2]PF6 (2) whereas the same reaction using CH3OH as a solvent and NH4PF6 as the halide abstractor leads to the formation of the FeIII–thiolate complex [Cp(dppe)Fe-2,2′-SPy]PF6 (3) and the mixed-valence complex [Cp(dppe)FeIII-μSPy-FeII(dppe)Cp](PF6)2 (4). Magnetic and ESR measurements are in agreement with one unpaired electron delocalized between them. Mössbauer data indicate clearly the presence of two different iron sites, each one of the N-bonded and S-bonded iron atoms, with intermediate oxidation state FeII---FeIII. An electron transfer intervalence absorption was observed for this complex at 780 nm (in CH2Cl2). By applying the Hush theory the intervalence parameters were obtained; =0.028, Hab=361 cm−1 which indicate Class II Robin–Day. Estimation of the rate electron transfer affords a value kth=6.5×106 s−1. Solvent effect on the intervalence transition follow the Hush prediction for high dielectric constants solvents which permit the evaluation of the outer and inner-sphere reorganizational parameters, which were analyzed and discussed. The electronic interaction parameters compare well with those found for electron transfer in metalloproteins.  相似文献   

19.
Two new phenylethynyl endcapping compounds, 3- and 4-amino-4′-phenylethynylbenzophenone, were synthesized and used to terminate imide oligomers from 3,4′-oxydianiline and 4,4′-oxydiphthalic anhydride at a calculated molecular weight of 9000 g/mol and from 3,4′-oxydianiline (0.85 mol), 1,3-bis (3-aminophenoxy) benzene (0.15 mol), and 3,3′,4,4′-biphenyltetracarboxylic dianhydride at a calculated molecular weight of 5000 g/mol. Glass transition temperatures for the cured oligomers were ~ 249°C for the former and 272°C for the latter. Films cured at 350°C for 1 h were tough and flexible and provided high tensile properties. The uncured oligomers were readily compression molded to provide tough, solve nt-resistant moldings. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The electrochemical and spectroelectrochemical properties of N,N-diphenyl-1,4-phenylenediamine (PDA) were investigated in the absence and in the presence of 18-crown-6-ether (18C6) or dibenzo 24-crown-8-ether (DB24C8), in a solution of tetrabutylammonium hexafluorophosphate (TBAPF6) in acetonitrile and in the presence of trifluoroacetic acid (TFA) only for 18C6. In neutral acetonitrile, PDA undergoes two reversible oxidation processes, which lead first to the formation of the cation-radical considered as mixed valence (MV) compound, and then to the dicationic species. When 18C6 is added in the medium and depending on 18C6 concentration, cyclic voltammetry shows a marked shift to more cathodic potentials of the current waves of the second redox process only. This is attributed to a strong interaction between the PDA(+2) dication and two 18C6 molecules, leading to the formation of a supramolecular complex with an association constant value K(a) = 7.0 × 10(7) M(-2). The interaction of 18C6 with PDA(+2) dication has a direct effect on the PDA(+.) cation-radical corresponding to a decrease in the lifetime of the MV compound and of the intramolecular electron transfer rate when 18C6 is present. Indeed, it results in a large decrease in the intervalence charge transfer (IV-CT) between the two amine centers in the MV compound (k(th) = 1.35 × 10(10) s(-1) in 18C6-free neutral solution containing 5.0 × 10(-4) M PDA, and k(th) = 3.6 × 10(9) s(-1) in the same medium at [18C6]/[PDA] = 20/1). And the comproportionation constant K(co) falls from 6.0 × 10(6) in 18C6-free solution to 1.6 × 10(3) at [18C6]/[PDA] = 20/1. In acidified acetonitrile and when TFA concentration is increased, PDA still shows the two successive and reversible oxidation processes, but both are shifted to more anodic potentials. However, when 18C6 is added, the two oxidation waves shift to more cathodic potentials, indicating an interaction of all protonated PDA redox states with 18C6, resulting in the formation of supramolecular complexes. In the presence of TFA, the value of K(co) is decreased to 4.3 × 10(4), but it remains unchanged when 18C6 is added, indicating no change in the lifetime of the MV compound. In this medium, IV-CT in the MV compound is greater with 18C6 (k(th) = 2.3 × 10(10) s(-1) for [18C6]/[PDA] = 20/1) than without (k(th) = 1.4 × 10(9) s(-1)), which indicates a more important IV-CT rate when 18C6 is present. The results show for the first time that is it possible to control the IV-CT rate, through the lifetime and the potential range where the MV compound is the most important. This control is not obtained as usual by chemical modification of the structure of the starting molecule, but by varying either the acidity or the 18C6 concentration as external stimuli, which lead to reversible formation/dissociation of a supramolecular complex species. Moreover, we also studied the electrochemical properties of PDA in the presence of wider crown ether such as DB24C8. We showed that PDA undergoes the same electrochemical behavior with DB24C8 than with 18C6 in neutral organic medium (K(a) = 2.9 × 10(3) M(-1)). This result suggests that the complexation between the electrogenerated PDA(+2) dication and the crown ethers may occur through face-to-face mode rather than rotaxane mode even with DB24C8 which is supposed to form inclusion complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号