首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Listeners detected a small amount of interaural incoherence in reproducible noises with narrow bandwidths and a center frequency of 500 Hz. The durations of the noise stimuli were 100, 50, or 25 ms, and every one of the noises had the same value of interaural coherence, namely 0.992. When the nominal noise bandwidth was 14 Hz, the ability to detect incoherence was found to depend strongly on the size of the fluctuations in interaural phase and level for durations of 100 and 50 ms. For the duration of 25 ms, performance did not appear to depend entirely on fluctuations. Instead, listeners sometimes recognized incoherence on the basis of laterality. However, when the nominal bandwidth was doubled, leading to a greater number of fluctuations, detection performance at 25 ms resembled that at 50 ms for the smaller bandwidth. It is concluded that the detection of a small amount of interaural incoherence is mediated by fluctuations in phase and level for brief stimulus durations, so long as such fluctuations exist physically. This conclusion presents a promising alternative to models of binaural detection that are based on the short-term cross-correlation in the stimulus.  相似文献   

2.
In the first two articles of this series, reproducible noises with a fixed value of interaural coherence (0.992) were used to study the human ability to detect interaural incoherence. It was found that incoherence detection is strongly correlated with fluctuations in interaural differences, especially for narrow noise bandwidths, but it remained unclear what function of the fluctuations best agrees with detection data. In the present article, ten different binaural models were tested against detection data for 14- and 108-Hz bandwidths. These models included different types of binaural processing: independent-interaural-phase-difference/interaural-level-difference, lateral-position, and short-term cross-correlation. Several preprocessing transformations of the interaural differences were incorporated: compression of binaural cues, temporal averaging, and envelope weighting. For the 14-Hz bandwidth data, the most successful model postulated that incoherence is detected via fluctuations of interaural phase and interaural level processed by independent centers. That model correlated with detectability at r=0.87. That model proved to be more successful than short-term cross-correlation models incorporating standard physiologically-based model features (r=0.78). For the 108-Hz bandwidth data, detection performance varied much less among different waveforms, and the data were less able to distinguish between models.  相似文献   

3.
The purpose of this experiment was to determine whether the normalized interaural cross-correlation (CC) model or a model based on interaural phase and level differences can better describe incoherence detection data. The ability to detect interaural incoherence in three sets of reproducible dichotic noises was tested in six listeners. The first set contained noises with a constrained value of the CC and the CC including signal compression. The second set contained noises with a constrained value of the CC including signal compression. The third set contained noises with constrained values in the fluctuations in the interaural differences. Modeling showed that neither the CC model nor the model using the interaural differences could account for the data in any set. Examination of the statistical properties of the stimuli showed that including compression before the calculation of the interaural CC causes a substantial correlation of this metric to the fluctuations in the interaural phase difference. This finding implies that it may be more difficult to discriminate between the common types of binaural models than previously thought.  相似文献   

4.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

5.
It is well known and universally accepted that people's ability to use ongoing interaural temporal disparities conveyed via pure tones is limited to frequencies below 1600 Hz. We wish to determine if this limitation is the result of the constant amplitude and periodic axis-crossings which characterize pure tones. To this end, an acoustic pointing task was employed in which listeners varied the interaural intensitive difference of a 500-Hz narrow-band noise (the pointer) so that the position of its intracranial image matched that of a second, experimenter-controlled stimulus (the target). Targets were either pure tones or narrow bands of noise (50 or 100 Hz wide). The narrow bands of noise were delayed interaurally in two distinct manners: Either the entire waveform or only the carrier was delayed. In the latter case, the envelopes and phase-functions of the bands of noise were identical interaurally. This resulted in noises which resemble the pure tone case in that the interaural delay is manifested as a constant phase-shift and resemble ordinary noises in that the envelope and phase are random functions of time. Surprisingly, it appears that all three targets were lateralized virtually identically regardless of frequency or bandwidth. Apparently, the dynamically changing envelopes and phases did not affect the listeners' use of interaural temporal disparities in any discernible fashion.  相似文献   

6.
The temporal resolution of the binaural auditory system was measured using a binaural analog of gap detection. A binaural "gap" was defined as a burst of interaurally uncorrelated noise (Nu) placed between two bursts of interaurally correlated noise (N0). The Nu burst creates a dip in the output of a binaural temporal window integrating interaural correlation, analogous to the dip created by a silent gap in the output of a monaural temporal window integrating intensity. The equivalent rectangular duration (ERD) of the binaural window was used as an index of binaural temporal resolution. In order to derive the ERD, both the shortest-detectable binaural gap and the jnd for a reduction in interaural correlation from unity were measured. In experiment 1, binaural-gap thresholds were measured using narrow-band noise carriers as a function of center frequency from 250 to 2000 Hz (fixed 100-Hz bandwidth) and a function of lower-cutoff frequency from 100 to 400 Hz (fixed 500-Hz upper-cutoff frequency). Binaural-gap thresholds (1) increased significantly with increasing frequency in both tasks, and (2) at frequencies below 500 Hz, were shorter than corresponding silent-gap thresholds measured with the same N0 noises. In experiment 2, interaural-correlation jnd's were measured for the same conditions. The jnd's also increased significantly with increasing frequency. The results were analyzed using a temporal window integrating the output of a computational model of binaural processing. The ERD of the window varied widely across listeners, with a mean value of 140 ms, and did not significantly depend on frequency. This duration is about an order of magnitude longer than the ERD of the monaural temporal window and is, therefore, consistent with "binaural sluggishness."  相似文献   

7.
The shape of the auditory filter was calculated from binaural masking experiments. Two different types of maskers were used in the study, a masker that was interaurally in phase at all frequencies (No), and a masker with an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The test-signal frequency varied between 200 and 800 Hz, and the test signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). By comparing the masked thresholds from the two experimental conditions, the following conclusion can be drawn: The threshold of the test signal is only affected by the masker phase within a narrow frequency range around the test frequency. Thus, for test-signal frequencies well above or below 500 Hz, no influence of the phase transition on the BMLD is observed, and normal masked thresholds for No and N pi maskers are obtained. For test frequencies around 500 Hz, the step in interaural phase difference leads to a decrease in the interaural correlation of the masker within the critical band around the test-signal frequency. This results in strong threshold changes for both monaural and binaural signals. A calculation of the auditory filter shape from the masked threshold values was performed under the assumption that the masked threshold is only dependent on the interaural cross correlation of the masker within the filter band. Using the formula of the EC theory for the relation between masker correlation and BMLD, the experimental data are well described by a trapezoidal filter with an equivalent rectangular bandwidth of 80 to 84 Hz.  相似文献   

8.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

9.
This paper investigated the influence of stimulus uncertainty in binaural detection experiments and the predictions of several binaural models for such conditions. Masked thresholds of a 500-Hz sinusoid were measured in an NrhoSpi condition for both running and frozen-noise maskers using a three interval, forced-choice (3IFC) procedure. The nominal masker correlation varied between 0.64 and 1, and the bandwidth of the masker was either 10, 100, or 1,000 Hz. The running-noise thresholds were expected to be higher than the frozen-noise thresholds because of stimulus uncertainty in the running-noise conditions. For an interaural correlation close to +1, no difference between frozen-noise and running-noise thresholds was expected for all values of the masker bandwidth. These expectations were supported by the experimental data: for interaural correlations less than 1.0, substantial differences between frozen and running-noise conditions were observed for bandwidths of 10 and 100 Hz. Two additional conditions were tested to further investigate the influence of stimulus uncertainty. In the first condition a different masker sample was chosen on each trial, but the correlation of the masker was forced to a fixed value. In the second condition one of two independent frozen-noise maskers was randomly chosen on each trial. Results from these experiments emphasized the influence of stimulus uncertainty in binaural detection tasks: if the degree of uncertainty in binaural cues was reduced, thresholds decreased towards thresholds in the conditions without any stimulus uncertainty. In the analysis of the data, stimulus uncertainty was expressed in terms of three theories of binaural processing: the interaural correlation, the EC theory, and a model based on the processing of interaural intensity differences (IIDs) and interaural time differences (ITDs). This analysis revealed that none of the theories tested could quantitatively account for the observed thresholds. In addition, it was found that, in conditions with stimulus uncertainty, predictions based on correlation differ from those based on the EC theory.  相似文献   

10.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

11.
Detectability of a filtered probe tone (250, 500, or 1000 Hz) was measured in the presence of a narrow-band Gaussian masker centered at the signal frequency. The signal was interaurally phase-reversed (Spi), and the masker's interaural correlation varied sinusoidally between +1.00 (NO) and -1.00 (Npi) at a varaible rate (fm = 0--4 Hz). The signal was presented at various points on the masker's modulation cycle. For 0-Hz modulation (fixed interaural correlation) signal threshold decreased monotonically as the masker's interaural correlation was changed from -1.00 to +1.00 (by a total of about 20, 16, and 8 dB, respectively, for 250-, 500-, and 1000-Hz signals). For fm greater than 0 the function relating signal threshold to the masker's interaural correlation at the moment of signal presentation became progressively flatter with increasing fm for all signal frequencies. For fm = 4 Hz the function was flat; there was no measurable effect of masker interaural correlation on signal detectability. Estimates of minimum binaural integration time based on these data ranged from 44--243 ms, supporting previous studies which have noted the binaural system's relative insensitivity to dynamic stimulation. Additionally, the estimated time constants were approximately twice as large at 250 Hz as at 500 Hz, indicating observers could follow binaural fluctuations better at 500 Hz. The time-constant estimates at 1000 Hz were not suggiciently reliable to permit comparisons with the lower-frequency data.  相似文献   

12.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

13.
An experiment was conducted to measure observers' ability to detect time-varying interaural intensity differences (IIDs). In a two-interval forced-choice task, observers discriminated a binaural amplitude modulated (AM) noise in which the modulating sinusoid was interaurally in-phase from the same AM noise in which the modulator was interaurally phase-reversed. The latter stimulus produces a sinusoidally varying IID whose rate and peak IID depend on the frequency (fm) and depth (m) of modulation. The carrier was a narrow-band noise, interaurally uncorrelated, centered at 500, 1000, or 4000 Hz. Presentation level was 75 dB SPL; duration was 1.0 s. For a given fm, m was varied in an adaptive procedure to estimate the depth required for 71% discriminability (mthr). Three of the four observers displayed "low-pass" modulation functions: at 500 Hz, as fm increased from 0-50 Hz, mthr increased from 0.08 (IID = 1.3 dB) to 0.50 (peak IID = 9.5 dB). At 1000 and 4000 Hz observers were more sensitive to IID and the functions (mthr vs fm) were flatter than at 500 Hz. Comparison of these data to previously published data indicates that the binaural system can follow fluctuations in IID more efficiently than it can follow fluctuations in interaural time difference, although there are large individual differences in subjects' capacity to process these two types of binaural cues.  相似文献   

14.
The ability to segregate two spectrally and temporally overlapping signals based on differences in temporal envelope structure and binaural cues was investigated. Signals were a harmonic tone complex (HTC) with 20 Hz fundamental frequency and a bandpass noise (BPN). Both signals had interaural differences of the same absolute value, but with opposite signs to establish lateralization to different sides of the medial plane, such that their combination yielded two different spatial configurations. As an indication for segregation ability, threshold interaural time and level differences were measured for discrimination between these spatial configurations. Discrimination based on interaural level differences was good, although absolute thresholds depended on signal bandwidth and center frequency. Discrimination based on interaural time differences required the signals' temporal envelope structures to be sufficiently different. Long-term interaural cross-correlation patterns or long-term averaged patterns after equalization-cancellation of the combined signals did not provide information for the discrimination. The binaural system must, therefore, have been capable of processing changes in interaural time differences within the period of the harmonic tone complex, suggesting that monaural information from the temporal envelopes influences the use of binaural information in the perceptual organization of signal components.  相似文献   

15.
Either an interaural phase shift or level difference was introduced to a narrow section of broadband noise in order to measure the acuity of the binaural system to segregate a narrowband from a broadband stimulus. Listeners were asked to indicate whether this dichotic noise or a totally diotic noise was presented in a single-interval procedure. Thresholds for interaural phase and level differences were estimated from four point psychometric functions. These thresholds were determined for three bandwidths of interaurally altered noise (2, 10, and 100 Hz) centered at four center frequencies (200, 500, 1000, and 1600 Hz). Thresholds were lowest when the interaurally altered band of noise was centered at 500 Hz, and thresholds increased as the bandwidth of the interaurally altered noise decreased. Performance did not exceed 75% correct when either an interaural phase shift (180 degrees) or interaural level difference (50 dB) was introduced to a 100 Hz band of noise centered at frequencies higher than 1600 Hz. In a second set of conditions, performance was measured when both an interaural phase shift and level difference were presented in a 10-Hz-wide band of noise centered at 500 Hz. A version of the Durlach E-C model was able to account for a great deal of the data. The results are discussed in terms of the Huggins dichotic pitch.  相似文献   

16.
Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise.  相似文献   

17.
The masking level difference (MLD) for a narrowband noise masker is associated with marked individual differences. This pair of studies examines factors that might account for these individual differences. Experiment 1 estimated the MLD for a 50 Hz wide band of masking noise centered at 500 or 2000 Hz, gated on for 400 ms. Tonal signals were either brief (15 ms) or long (200 ms), and brief signals were coincident with either a dip or peak in the masker envelope. Experiment 2 estimated the MLD for both signal and masker consisting of a 50 Hz wide bandpass noise centered on 500 Hz. Signals were generated to provide only interaural phase cues, only interaural level cues, or both. The pattern of individual differences was dominated by variability in NoSpi thresholds, and NoSpi thresholds were highly correlated across all conditions. Results suggest that the individual differences observed in Experiment 1 were not primarily driven by differences in the use of binaural fine structure cues or in binaural temporal resolution. The range of thresholds obtained for a brief NoSpi tonal signal at 500 Hz was consistent with a model based on normalized interaural correlation. This model was not consistent for analogous conditions at 2000 Hz.  相似文献   

18.
Recent data from three laboratories have replicated Mills' [J. Acoust. Soc. Am. 32, 132-134 (1960)] finding that interaural intensity discrimination is relatively poorer for tones of 1000 Hz than for tones of either higher or lower frequencies. To get a finer look at this frequency effect, interaural intensity difference thresholds were obtained from four subjects for tones of several frequencies around 1000 Hz. An adaptive two-interval forced-choice procedure was employed, in which the overall intensity of the signals was varied randomly in order to prevent subjects from listening to monaural loudness changes. Despite large intersubject differences in overall sensitivity to interaural intensity differences, all four subjects showed a local peak in their threshold functions at or near 1000 Hz. This curious "1000-Hz effect" might be explained by imagining that an interaural intensity comparator operates more efficiently as frequency increases, but that a peripheral interaural intensity difference to interaural-time difference conversion contributes to laterality judgments for low-frequency tones, thus acting to lower thresholds again for frequencies below 1000 Hz.  相似文献   

19.
The masking-level difference (MLD) for a 500-Hz monaural pure-tone signal was examined as a function of the interaural phase shift of a 100-Hz-wide noise band centered on 500 Hz. Results indicated that the MLD decreased in magnitude as the interaural phase shift of the masker increased. In a second experiment, the 100-Hz-wide noise band was used as both the masker and the signal in order to examine the detection cues of interaural time difference and interaural level difference separately. Again, the interaural phase of the masker was varied, and an Sm signal was presented. Results indicated that the MLD decreased as a function of increasing masker interaural temporal difference for the time cue, but that the MLD did not change systematically for the level cue. The deterioration of binaural detection as a function of increasing masker interaural phase difference was not as great as that which has been reported in localization and lateralization experiments.  相似文献   

20.
The effects of stimulus bandwidth on lateralization of narrow bands of noise were investigated with an acoustic pointing task. Stimuli were narrow bands of noise (centered on 500 Hz with bandwidths ranging from 50-400 Hz) that contained interaural time delays and/or interaural phase shifts. The overall extent of lateralization and sidedness was found to vary greatly as a function of stimulus bandwidth, as insightfully discussed earlier by Jeffress [L. A. Jeffress, Foundations of Modern Auditory Theory, edited by J. V. Tobias (Academic, New York, 1972)]. The data are qualitatively consistent with a weighted-image model [Stern et al., J. Acoust. Soc. Am. 84, 156-165 (1988)] that specifies and utilizes the shapes and locations of patterns of hypothesized neural activity. These patterns are topographically organized along a two-dimensional surface, and they describe the cross-correlation function of the stimuli as a joint function of frequency and the delay parameter of the cross-correlation operation. In this fashion, lateralization depends upon individual modes of such patterns that are weighed with respect to their straightness (consistency of interaural delay over frequency) and centrality (the extent to which interaural delays are small in magnitude).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号