首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-H(ax)···Y(ax) contacts are a textbook prototype of steric hindrance in organic chemistry. The nature of these contacts is investigated in this work. MP2/6-31+G(d,p) calculations predicted the presence of improper hydrogen bonded C-H(ax)···Y(ax) contacts of different strength in substituted cyclohexane rings. To support the theoretical predictions with experimental evidence, several synthetic 2-substituted adamantane analogues (1-24) with suitable improper H-bonded C-H(ax)···Y(ax) contacts of different strength were used as models of a substituted cyclohexane ring. The (1)H NMR signal separation, Δδ(γ-CH(2)), within the cyclohexane ring γ-CH(2)s is raised when the MP2/6-31+G(d,p) calculated parameters, reflecting the strength of the H-bonded C-H(ax)···Y(ax) contact, are increased. In molecules with enhanced improper H-bonded contacts C-H(ax)···Y(ax), like those having sterically crowded contacts (Y(ax) = t-Bu) or contacts including considerable electrostatic attractions (Y(ax) = O-C or O═C) the calculated DFT steric energies of the γ-axial hydrogens are considerably reduced reflecting their electron cloud compression. The results suggest that the proton H(ax) electron cloud compression, caused by the C-H(ax)···Y(ax) contacts, and the resulting increase in Δδ(γ-CH(2)) value can be effected not just from van der Waals spheres compression, but more generally from electrostatic attraction forces and van der Waals repulsion, both of which are improper H-bonding components.  相似文献   

2.
Ethylene dimerization reaction is one of the most common mechanisms for the production of 1-butene. Recently, metal–organic frameworks (MOFs) have received extensive attention in this area since they combine all the advantages of homogeneous and heterogeneous catalysts in a single compound. Here a computational mechanistic study of MOF-supported palladium single-site catalyst for ethylene dimerization reaction is reported. Catalytic systems with both biphenyl-type backbone as organic ligand and its fluorine-functionalization have been investigated to reveal the origin of ligand effects on the catalytic activity and selectivity. The calculations revealed that the nonfluorinated palladium MOF catalyst undergoes dimerization over isomerization reaction. Then the influence of the fluorine-functionalized organic ligand was compared in the dimerization catalytic cycle, which was strongly favored in terms of activity and selectivity. Catalyst-substrate interactions were analyzed by energy decomposition analysis revealing the critical role of ligand backbone functionalization on the activity. This theoretical analysis identified three chemically meaningful dominant effects on these catalysts; steric, electrostatic and charge transfer effects. The steric effects promote nonfluorinated MOF catalyst, whereas the electrostatic effects are the dominant factor that promotes its fluorinated counterpart. This theoretical study provides feedback with future experimental studies about the role of fluorine ligand functionalization in palladium MOF catalysts for ethylene dimerization reaction.  相似文献   

3.
High facial selectivity (>99%) of nucleophilic addition to the carbonyl groups of the title compounds (1 and 2) has been achieved for the novel trioxa cage 2, but not for the dioxa 1. Similar experimental observations were made for the carbene addition to the double bonds of cage compounds, 3 and 4. Calculations were carried out for the cage compounds and their reaction transition structures, with LiH as a nucleophile and :CCl(2) as an attacking carbene. The calculated facial preference for nucleophilic and carbene addition agreed well with experimental results. The origins of facial selectivity are examined from the viewpoints of structure, frontier orbitals, and molecular electrostatic potential of the reactants, as well as strain, electrostatic, and hyperconjugation effects in the transition state. For dioxa cages, the structural facial difference around the reaction center is minor, but the electronic difference of syn and anti faces generated by the two remote oxygen atoms is clearly demonstrated via frontier orbital and MEP analyses. For trioxa cages, the close proximity of the third ether oxygen (O(s)) to the reaction center brings large structural and electronic changes around the reaction center. The calculated electrostatic and strain energy differences of syn and anti transition structures are significantly larger for trioxa cages than for the dioxa cages. Therefore, they both contribute to the enhanced facial selectivity of trioxa compounds. Finally, analysis of hyperconjugative stabilization in transition structures reveals the danger of relying solely on Cieplak or Anh models in rationalization of facial selectivity, especially when nonequivalent steric and electrostatic effects as those present in the trioxa systems are involved.  相似文献   

4.
N.L. Allinger  J. Kao 《Tetrahedron》1976,32(5):529-536
The conformational characteristics of dimethyl sulfoxide and a number of 6-membered ring sulfoxides have been studied. The thiane, 1,3- and 1,4-dithiane and 1,3,5-trithiane ring systems with various oxide substitutions have been examined. It is found that the chair forms are more stable than the twist or boat in all cases. The energy profiles of the twist-boat manifold are in many cases highly unusual, and quite different from anything so far known experimentally. The axial-equatorial preference of the oxygen is highly variable, depending on the steric and electrostatic interactions found in the particular case.  相似文献   

5.
The Claisen rearrangement of 1-methyl-2-isopropyoxycarbonyl-6-propyl allyl vinyl ether catalyzed by copper(II) bisoxazoline (Cu-box) has been investigated using density functional theory. Both the phenyl- and tert-butyl-substituted Cu-box systems have been studied. Three different reaction media (vacuum, CH2Cl2, CH3CN) have been considered. In vacuum, the phenyl Cu-box catalyzed reaction yields a (1R,6R) configured major product with a low selectivity. The solvent induces a higher selectivity and a reversal of the absolute configuration (1S,6S). However, the tert-butyl Cu-box catalyzed reaction yields (1R,6R) as the major product both in the gas phase and in the solvent with a good selectivity. Although chair-like TSs are lower in energy than boat-like TSs, the energy difference is small. This is because in the presence of the catalyst the distance between the allyl and vinyl parts of the substrate is relatively large, and thus the steric repulsion between them is smaller than would normally be expected for boat-like structures. The enantioselectivity of tert-butyl Cu-box originates from the steric interactions between the substrate and the catalyst, which are less important for the phenyl Cu-box where the enantioselectivity is determined by the solvent effects.  相似文献   

6.
[reaction: see text] Theoretical calculations at the B3LYP/6-31+G(d), MP2/6-31+G(d), and G3(MP2) levels have been carried out to understand the alternative reaction pathways (the cyclopropyl ring cleavage (RC) and the retrocycloaddition reaction (rCA)) of a constrained tricyanocyclopropyl anionic derivative. The more energetically favorable path is found to be the RC process, a formally "forbidden" rearrangement (Leiviers, M.; Tam, I.; Groves, K.; Leung, D.; Xie, Y.; Breslow, R. Org. Lett. 2003, 5, 19, 3407) yielding an allylic anion system via a concerted transition structure, in agreement with experimental outcomes. rCA is more energetically favorable along a two-stage mechanism, via an intermediate, than a synchronous concerted process. By using isodesmic reactions, we have found that B3LYP presents limitations when it calculates carbon-carbon bond-breaking processes along the present rCA reaction. A detailed analysis of the nature of the topology of the reactive potential energy surface for the RC process points out the presence of a valley-ridge inflection point in the uphill part. An explanation for the low-energy barrier associated with RC is furnished on the analysis of the evolution of the twisting (dis-/conrotatory) motions of cyano substituents in the cyclopropyl ring as well as on the number and type of electron pairs provided by the electron localization function (ELF).  相似文献   

7.
Sequential carbonyl addition-conjugate addition of Grignard reagents to cyclic 5-7-membered oxoalkenenitriles efficiently generates cyclic magnesiated nitriles. Alkylations of these magnesiated nitriles exhibit diastereoselectivities that depend intimately on the size of the carbocyclic ring: 5-membered oxonitriles generate magnesiated nitriles whose alkylations are controlled by steric constraints whereas 6- and 7-membered oxonitriles generate internally coordinated, C-magnesiated nitriles whose alkylations are controlled by stereoelectronic effects. Reversing the alkylation selectivity of 6-membered C-magnesiated nitriles is achieved by conversion to an N-metalated nitrile in which steric, rather than electronic, effects direct the electrophile trajectory. Collectively, the conjugate addition-alkylation generates highly substituted, cyclic 5-7-membered nitriles containing three new stereocenters with selective access to diastereomers at the quaternary nitrile-bearing carbon.  相似文献   

8.
The diastereo- and enantioselectivity obtained experimentally by Christmann in the amine-catalyzed intramolecular Diels-Alder reaction of α,β-unsaturated carbonylic compounds were fully rationalized using density functional theory methods at the PBE1PBE/6-311+G** level. A polarizable continuum model was used to describe solvent effects. The selectivity is induced in the cyclization step, and while the enantioselectivity results from the syn/anti orientation around the C-N enamine bond, the diastereoselectivity mainly results from the syn/anti configuration of the substituents in the forming cyclopentane ring. The remarkable reaction rate experimentally observed when an external protic acid is used is attributed to the strong decrease in the activation energy of all steps needed for the enamine formation, while the external acid marginally influences the cyclization step. When hydrogen-bond-donor catalysts are used, the formation of one hydrogen bond in the cyclization step inverts the configuration and reduces the selectivity. The different behavior between dialdehydes and ketoaldehydes is suggested to be resulting from different reaction rates in the catalyst elimination step.  相似文献   

9.
Lewis acid-mediated nucleophilic substitution reactions of substituted tetrahydropyran acetates reveal that the conformational preferences of six-membered-ring cations depend significantly upon the electronic nature of the substituent. Nucleophilic substitutions of C-3 and C-4 alkyl-substituted tetrahydropyran acetates proceeded via pseudoequatorially substituted oxocarbenium ions, as would be expected by consideration of steric effects. Substitutions of C-3 and C-4 alkoxy-substituted tetrahydropyran acetates, however, proceeded via pseudoaxially oriented oxocarbenium ions. The unusual selectivities controlled by the alkoxy groups were demonstrated for a range of other heteroatom substituents, including nitrogen, fluorine, chlorine, and bromine. It is believed that the pseudoaxial conformation is preferred in the ground state of the cation because of an electrostatic attraction between the cationic carbon center of the oxocarbenium ion and the heteroatom substituent. This analysis is supported by the observation that selectivity diminishes down the halogen series, which is inconsistent with electron donation as might be expected during anchimeric assistance. The C-2 heteroatom-substituted systems gave moderately high 1,2-cis selectivity, while small alkyl substituents showed no selectivity. Only in the case of the tert-butyl group at C-2 was high 1,2-trans selectivity observed. These studies reinforce the idea that ground-state conformational effects need to be considered along with steric approach considerations.  相似文献   

10.
The mechanism and stereoselectivity in an organocatalyzed triple cascade reaction between an aldehyde, electron deficient olefin and an alpha,beta-unsaturated aldehyde are investigated for the first time using density functional theory. The factors responsible for high levels of observed stereoselectivity (Enders et al., Nature, 2006, 441, 861) towards the generation of cyclohexene carbaldehyde with four contiguous stereocentres are unravelled. The triple cascade reaction, comprising a Michael, Michael and aldol sequence as the key elementary reactions, is studied by identifying the corresponding transition states for the stereoselective C-C bond-formation. In the first Michael addition step between the enamine (derived from the chiral catalyst and propanal) and nitrostyrene, energetically the most preferred mode of addition is found to be between the si-face of (E)-anti-enamine on the si-face of nitrostyrene. The addition of the si-face of the nitroalkane anion on the re-face of the iminium ion (formed between the enal and the catalyst) is the lowest energy pathway for the second Michael addition step. The high level of asymmetric induction is rationalized with the help of relative activation barriers associated with the competitive diastereomeric pathways. Interesting weak interactions, along with the steric effects offered by the bulky alpha-substituent on the pyrrolidine ring, are identified as critical to the stereoselectivity in this triple cascade reaction. The predicted stereoselectivities using computed energetics are found to be in perfect harmony with the experimental stereoselectivities.  相似文献   

11.
Summary It is shown that all stereospecific preferences found experimentally for the ring opening of substituted cyclopropylidenes are satisfactorily reproduced by adding steric and long-range electrostatic interactions to the cyclopropylidene reaction surface. The corresponding surface for dimethyl cyclopropylidene is mapped out in detail. The surface for 3-methyl- and 2-bromo-3-methyl-cyclopropylidene is explored around the transition region. From the success of this approach it is inferred that short-range covalent interactions are unlikely to be responsible for sterospecific preferences found in these systems.Operated for the U.S. Department of Energy by Iowa State University under Contract No. 7405-ENG-82. This work was supported by the office of Basic Energy Sciences  相似文献   

12.
We report computational investigations on the mechanism and the selectivity of Pd-catalyzed allylic alkylation of γ-valerolactone. Density functional calculations using the B3LYP functional are performed on the selectivity-determining nucleophilic addition step of this reaction. The B3LYP results of commonly assumed pathways fail to reproduce the observed selectivity of the reaction. Therefore, alternative pathways are considered for the nucleophilic addition step, to explain the experimentally established role of the additives LiCl and lithium diisopropyl amide (LDA) in the Pd-catalyzed reaction. These pathways involve different approaches of the enolate toward the η(3) -allylpalladium complex that are mainly guided by stabilizing Cl(δ-) ???Li(δ+) ???O(enolate) interactions in the transition state. In the calculations, the experimentally observed trans-product selectivity for the prototypical reaction with (S)-BINAP ligands is found only when assuming the addition of a "mixed" Li-enolate/LiCl adduct to the η(3) -allylpalladium complex. This mechanism provides a reasonable explanation for the experimental results and sheds light on the role of LiCl in the reaction. The analysis of the different transition-state models allows us to identify steric and electronic factors that stabilize or destabilize the relevant diastereomeric transition states. Calculations for different combinations of substrates (γ-valerolactone and δ-caprolactone) and catalysts (with (R)- and (S)-BINAP ligands) reproduce the experimentally observed selectivities well and thus provide further support for the proposed mechanism.  相似文献   

13.
The current approach to improve and tune the enantioselective performances of transition-metal catalysts for asymmetric synthesis is mostly focused to modifications of the steric properties of the ancillary ligands of the active metal. Nevertheless, it is also known that electrostatic effects can have a remarkable role to promote selectivity in asymmetric synthesis. Using the Rh-catalyzed asymmetric 1,4-addition of phenylboronic acid to 2-cyclohexenone leading to chiral 3-phenylcyclohexanone as an example, we could show that high enantioselectivity can be indeed achieved using catalysts essentially based either on steric or electrostatic effects as the main source of enantioselective induction. In this contribution we suggest that the analysis of the surface of interaction between the catalyst and the substrate could be a useful tool to quantify the power of steric and electrostatic effects of catalysts.  相似文献   

14.
Aza-Michael additions of alpha-amino esters to fluorinated acceptors take place in a highly stereoselective manner, to give partially modified Psi[NHCH2]retropeptides incorporating a hydrolytically stable trifluoroalanine mimic. The reaction mechanism has been investigated experimentally and theoretically, in order to explain the effect of the trifluoromethyl group on the reactivity and the origins of the experimentally observed stereocontrol. The reaction is a two-step process, involving a tandem aza-Michael addition followed by a stereoselective hydrogen transfer. Both steps are base-catalyzed. The high level of stereocontrol is the result of a combination of electrostatic interactions and steric effects.  相似文献   

15.
Intramolecular Diels-Alder reactions of 2-azadiene models have been studied quantum chemically at the B3LYP/6-31G level in order to elucidate the stereochemical features of the cyclization step involved in the biosynthesis of paraherquamide A and VM99955. These cycloadditions take place through concerted transition states associated with [4 + 2] processes. Analysis of the energies along the competitive paths reveals that while the cycloadditions of the oxindoles present a large anti selectivity, the indoles show a low syn selectivity for the formation of the C20 stereogenic center that is larger for the reduced tertiary amide form. The presence of the C14 methyl of the beta-methylproline ring produces a low hindrance along the reaction coordinate for the syn approach of the isoprene framework, in agreement with the low facial selectivity found experimentally. An analysis of the electrophilicity and activation parameters for experimental models of the inter- and intramolecular Diels-Alder reactions reveals several significant factors controlling these biosynthetic cyclizations. The results are in reasonable agreement with the available experimental data.  相似文献   

16.
The ruthenium‐ and rhodium‐catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O?H deprotonation/C(sp2)?H bond cleavage through a concerted metalation–deprotonation mechanism/migratory insertion of the alkyne into the M?C bond to deliver the eight‐membered metallacycle. However, the dearomatization through the originally proposed enol–keto tautomerization/C?C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight‐membered metallacycle through rotation of the C?C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C?C coupling between the carbene carbon atom and the carbon atom of the 2‐naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium‐catalyzed oxidative annulation of 2‐vinylphenols with alkynes. The calculations show that compared with the case of 2‐alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition.  相似文献   

17.
A series of novel tetrahomodioxacalix[4]biscrowns with crown-2, crown-3, crown-4, crown-5, and crown-6 units were synthesized. Conformations of each product are dependent on the base used and their conformation stabilities. All conformations were proven by NMR spectra and/or X-ray crystal structures. The 1,3-alternate homodioxacalix[4]biscrown-4 (4b) shows the best selectivity for K+, whereas the 1,3-alternate homodioxacalix[4]crown-5 (5) does for Cs+. Those selectivities are attributable to electrostatic interaction between the metal ion and the crown ring, as well as a pi-metal complexation. However, the C-1,2-alternate conformation does not take the metal ions regardless of the crown species as a result of steric hindrance from the methylene bridge of an ArCH2Ar unit.  相似文献   

18.
A theoretical investigation of proton-coupled electron transfer in ruthenium polypyridyl complexes is presented. The three reactions studied are as follows: (1) the comproportionation reaction of [(bpy)(2)(py)Ru(IV)O](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(bpy)(2)(py)Ru(III)OH](2+); (2) the comproportionation reaction of [(tpy)(bpy)Ru(IV)O](2+) and [(tpy)(bpy)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(III)OH](2+); and (3) the cross reaction of [(tpy)(bpy)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(II)OH(2)](2+) and [(bpy)(2)(py)Ru(III)OH](2+). This investigation is motivated by experimental measurements of rates and kinetic isotope effects for these systems (Binstead, R. A.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 3287. Farrer, B. T.; Thorp, H. H. Inorg. Chem. 1999, 38, 2497.). These experiments indicate that the second reaction is nearly one order of magnitude faster than the first reaction, and the third reaction is in the intermediate regime. The experimentally measured kinetic isotope effects for these three reactions are 16.1, 11.4, and 5.8, respectively. The theoretical calculations elucidate the physical basis for the experimentally observed trends in rates and kinetic isotope effects, as well as for the unusually high magnitude of the kinetic isotope effects. In this empirical model, the proton donor-acceptor distance is predicted to be largest for the first reaction and smallest for the third reaction. This prediction is consistent with the degree of steric crowding near the oxygen proton acceptor for the three reactions. The second reaction is faster than the first reaction since a smaller proton donor-acceptor distance leads to a larger overlap between the reactant and product proton vibrational wave functions. The intermediate rate of the third reaction is determined by a balance among several competing factors. The observed trend in the kinetic isotope effects arises from the higher ratio of the hydrogen to deuterium vibrational wave function overlap for larger proton donor-acceptor distances. Thus, the kinetic isotope effect increases for larger proton donor-acceptor distances. The unusually high magnitude of the kinetic isotope effects is due in part to the close proximity of the proton transfer interface to the electron donor and acceptor. This proximity results in strong electrostatic interactions that lead to a relatively small overlap between the reactant and product vibrational wave functions.  相似文献   

19.
高宇  张月成  赵继全 《催化学报》2009,30(12):1243-1247
 利用 2-吡啶甲醛、6-甲基-2-吡啶甲醛或 6-异丙基-2-吡啶甲醛与对甲基苯胺缩合制得双氮席夫碱配体, 考察了席夫碱配体以及溶剂和温度对甲基三氧化铼 (MTO) 催化不同结构烯烃环氧化反应的影响. 结果表明, 这些席夫碱配体与 MTO 构成的催化剂体系在甲醇溶剂中的催化性能最好, 双氮配体能显著提高环氧化反应的选择性. 当以甲醇为溶剂, 环己烯为底物, 在 –10 oC 反应 12 h 时, 环己烯转化率和环氧化物选择性均可达 100%. 席夫碱的配位能力越强, 越有利于提高环氧化物选择性, 而其配位能力取决于吡啶环中 6-位取代基的电子和立体结构. 给电子能力较强和空间位阻较小的烷基对应的配体的配位能力较强.  相似文献   

20.
We present joint theoretical and experimental results which provide evidence for the selectivity of V(x)O(y)(+) clusters in reactions toward ethylene due to the charge and different oxidation states of vanadium for different cluster sizes. Density functional calculations were performed on the reactions between V(x)O(y)(+) and ethylene, allowing us to identify the structure-reactivity relationship and to corroborate the experimental results obtained by Castleman and co-workers (Zemski, K. A.; Justes, D. R.; Castleman, A. W., Jr. J. Phys. Chem. A 2001, 105, 10237). The lowest-energy structures for the V(2)O(2)(-)(6)(+) and V(4)O(8)(-)(10)(+) clusters and the V(2)O(3)(-)(6)(+)-C(2)H(4) and V(4)O(10)(+)-C(2)H(4) complexes, as well as the energetics for reactions between ethylene and V(2)O(4)(-)(6)(+) and V(4)O(10)(+) are presented here. The oxygen transfer reaction pathway was determined to be the most energetically favorable one available to V(2)O(5)(+) and V(4)O(10)(+) via a radical-cation mechanism.The association and replacement reaction pathways were found to be the optimal channels for V(2)O(4)(+) and V(2)O(6)(+), respectively. These results are in agreement with the experimental results reported previously. Experiments were also conducted for the reactions between V(2)O(5)(+) and ethylene to include an energetic analysis at increasing pressures. It was found that the addition of energy depleted the production of V(2)O(4)(+), confirming that a more involved reaction rather than a collisional process is responsible for the observed phenomenon. In this contribution we show that investigation of reactions involving gas-phase cationic vanadium oxide clusters with small hydrocarbons is suitable for the identification of reactive centers responsible for selectivity in heterogeneous catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号