首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

2.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

3.
The problem of spherical wave propagation in soil under the action of an intense uniformly decreasing load 0(t) applied to the boundary of a cavity with radius r0 is considered. Soil with a high stress level is modeled either by ideally nonlinearly compressible or elastoplastic material, taking account of linear irreversible unloading for the material. In contrast to [1–7], in order to describe material movement use is made of strain theory [8] with determining functions = (), i=i(i), where , i, , i are the first and second invariants of strain and stress tensors. During material loading these functions are presented in the form of polynomials ()=(i+2¦¦), ii)=(i-2i)i, in which constant coefficients i, i=1, 2) are determined by experiment, taking account of the triaxial stressed state of soil. Solution of the problem is constructed by an analytically reversible method, with prescribed shape for the shock-wave (SW) surface in the form of a second-degree polynomial relating to time t and a numerical method of characteristics for a prescribed arbitrarily decreasing load i(t). On the basis of the analytical equations obtained, calculations are carried out for material parameters (including loading profile) in a computer and stresses and mass velocity of plastic and elastoplastic materials are compared.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 95–100, July–August, 1986.The authors express their sincere thanks to Kh. A. Rakhmatulin for discussing the results of this work.  相似文献   

4.
Summary Stress analysis has been carried out for a finite cylinder subjected to arbitrarily distributed axisymmetrical surface loads. Direct stress x in the axial direction is assumed to be of the form x = 0+r 1 +r 2 where 0 to 2 are functions of x. Using the equations of equilibrium and compatibility the other direct stresses and the shearing stress are expressed by 1 and 2. Fundamental equations governing 1 and 2 are introduced using the variational principle of complementary energy. From the results of the present analysis it is evident that the boundary conditions can be satisfied completely even for the case where the external forces are specified in complicated form, and that more accurate solutions can easily be obtained by introducing additional terms in x.
Spannungsanalyse für den Zylinder unter axialsymmetrischer Last in beliebiger Verteilung
Übersicht Für einen endlichen Zylinder unter axialsymmetrischer Oberflächenlast in beliebiger Verteilung werden die Spannungen ermittelt. Die Normalspannung in Axialrichtung wird in der Form x = 0+r 1 +r 2 angesetzt mit 0, 1, 2 als Funktionen von x. Mit Hilfe der Gleichgewichtsund Verträglichkeitsbedingungen werden die anderen Normalspannungen und die Schubspannung durch 1 und 2 ausgedrückt. Über das Variationsprinzip für die Komplementärenergie werden die grundlegenden Gleichungen für 1 und 2 eingeführt. Die Ergebnisse zeigen, daß die Randbedingungen selbst für komplizierte Belastungsarten vollständig erfüllbar sind und mit zusätzlichen Termen in x mühelos noch genauere Lösungen bestimmt werden können.
  相似文献   

5.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

6.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

7.
An analytical model for deducing the actual stress-strain properties from laboratory test results is discussed. As an illustration, an elastic bilinear material is used for unconfined cylindrical compression test conditions, as simulated with a finite element analysis. The results obtained are applicable for assisting in evaluating measured strength and stiffness properties of some clay soils, concrete test cylinders, concrete cores, and rock cores.The quantitative results of this study can be used for interpreting measured stress-strain data for unconfined compression test conditions. The error in measured results is shown to be influenced by Poisson's ratio, length-to-diameter ratio of the specimen, end condition, and ratio of inelastic modulus to initial elastic modulus. Curves for adjusting the measured results to the theoretical results are presented.Nomenclature D specimen diameter - E i initial elastic stiffness modulus - E y elastic stiffness modulus beyond the yield stress, plastic or inelastic modulus - L specimen length - axial strain - av average strain - g gage length strain - y yield strain - Poisson's ratio - compressive stress - av average stress - t theoretical compressive stress - y yield stress - ym measured stress at the yield strain  相似文献   

8.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

9.
A generalized formula is given for the critical heat flux, and it is shown that crises of this type are most characteristic of the boiling of organic liquids at high temperatures.Notation q* critical heat flux - q heat flux - W mean flow speed of liquid in crisis section; - Wg mass flow rate - r latent heat of evaporation - coefficient of surface tension - -@#@ density of dry saturated vapor - density of liquid on saturation line - i enthalpy of liquid on saturation line - i mean enthalpy of liquid in crisis cross section - cf coefficient of friction - g acceleration due to gravity - P static pressure in crisis cross section - T saturation temperature - T* temperature of surface of tube - mean density of liquid in crisis cross section I am indebted to I. N. Svorkova for assistance.I am also indebted to S. S. Kutateladze and A. I. Leont'ev for discussions and valuable comments.  相似文献   

10.
The stress distribution in a homogeneous beam subjected to three-point bending is investigated using the method of optical isodynes. The three stress components xx,yy and xy acting in the planes formed by the longitudinal and vertical axes of the beam are determined in three planes situated at different through the thickness locations with respect to the beam's midplane. The experimental results are subsequently correlated with the two-dimensional elasticity solution. It is illustrated that at locations sufficiently removed from the centrally applied concentrated load, good correlation between theory and experiment is obtained. In the regions where high stress gradients exist however, differences are observed in the in-plane stress distributions in the different planes. These differences are explained by the presence of the out of plane normal stress zz using the relations of optical isodynes. Greatest differences between theory and experiment are obtained for the in-plane shear stress component xy.  相似文献   

11.
Stationary and nonstationary modes of elastic fluid motion for a given constant strain rate =const were studied under simple shear conditions, theoretically in [1, 2] as compared with experiment; time dependences of the normal and tangential stresses were examined for the emergence into stationary flow and their relaxation from steady flow. These results permitted a study of the relaxation characteristics of elastic fluids. However, no less interesting are the lagging (retardation) effects in elastic fluids, which can be studied in modes giving the shear stress 12(). In this paper, the two most widespread shear modes in practice are examined theoretically and experimentally for a given 12: the mode of arrival at the stationary flow from the state of rest for 12=const and the mode of retardation (elastic recovery) from stationary flow. Theoretical computations are performed on a model describing large elastic strains. The experiment was performed on a concentrated polymer solution. Quantitative correspondence between theory and experiment is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 9–13, July–August, 1976.  相似文献   

12.
Übersicht Es werden verschiedene Bedingungen aufgestellt, die es erlauben, die durch die beiden (Systeme von) nichtlinearen DifferentialgleichungenA (u, ) = q, B (u, ) = und Randbedingungen zusammen mit den nichtlinearen algebraischen Relationenq = C(u, ), = D(u, ) beschriebene Aufgabe durch äquivalente Variationsprobleme zu ersetzen. Dabei zeigt sich ein enger Zusammenhang mit den in der Festkörpermechanik wohlbekannten Prinzipien der virtuellen Verschiebungen und der virtuellen Kräfte. Die auf systematischem Weg konstruierten Variationsfunktionale enthalten viele in der Physik bekannte Funktionale als Sonderfälle, insbesondere jene, die in der Elastomechanik nach Green, Castigliano, Hellinger, Reißner, Hu und Washizu benannt werden.
Summary In this paper there are established various conditions which allow a variational formulation of the problem described by the two (systems of) nonlinear differential equationsA(u, ) = q, B(u, ) = and boundary conditions together with the nonlinear algebraic relationsq = C(u, ), = D(u, ). Besides a close relationship is revealed to the principles of virtual displacements and virtual forces which are wellknown in solid mechanics. The systematically constructed variational functional contain many functionals in physics as special cases, mainly those of Green, Castigliano, Hellinger, Reißner, Hu and Washizu in elastomechanics.
  相似文献   

13.
Zusammenfassung Die Oberflächenspannung von sechs reinen Substanzen — SF6, CCl3F, CCl2F2, CClF3, CBrF3 und CHClF2 — wurde mit Hilfe einer modifizierten Kapillarmethode gemessen. Die zur Berechnung der Oberflächenspannung erforderlichen Sättigungsdichten und wurden teils aus vorhandenen Zustandsgleichungen, teils aus ebenfalls gemessenen Brechungsindizes bestimmt. Die Temperaturabhängigkeit der Oberflächenspannung läßt sich durch einen erweiterten Ansatz nach van der Waals =O (Tc-T)(1+...) darstellen, wobei bei einfachen Stoffen ein eingliedriger, bei polaren und assoziierenden Stoffen ein zweigliedriger Ansatz notwendig und ausreichend ist. Für den kritischen Exponenten der Oberflächenspannung wurde ein von der molekularen Substanz weitgehend unabhängiger Wert von =1.284±0.005 gefunden.
Temperature dependence of surface tension of pure refrigerants from triple point up to the critical point
The surface tension of six fluids (SF6, CCl3F, CCl2F2, CClF3, CBrF3, CHClF2) have been measured by means of a modified capillary rise method. The liquid vapor densities, which are needed to calculate the surface tension, have partly been determined by means of refractive indices simultaneously measured in the same apparatus. The temperature dependence of the surface tension is described by an extended van der Waals power law =O(Tc-T)(1+...). For simple fluids one term and for polar and associating fluids two terms are necessary and sufficient. The critical exponent is found to be 1.284 ± 0.005 and nearly independent of the molecular structure.

Formelzeichen a2 Laplace-Koeffizient - a Parameter - BO, Bon Koeffizient der Koexistenzkurve - g Erdbeschleunigung - H Höhe, kapillare Steighöhe - LL Lorentz-Lorenz-Funktion oder Refraktionskonstante - M molare Masse - M Zahl der Meßwerte - N Zahl der unbekannten Parameter - n Brechungsindex - p Druck - R,r Radius - s Entropie - SD Standardabweichung - T, t Temperatur - u innere Energie Griechische Formelzeichen Exponent des Laplace-Koeffizienten - Exponent der Koexistenzkurve - 2. Exponent der Oberflächenspannung - Wellenlänge des Lichts - Exponent der Oberflächenspannung - D Dipolmoment - , Dichte der Flüssigkeit bzw. des Dampfes - Oberflächenspannung - reduzierte Temperatur (1-T/Tc) - 2 gewichtete Varianz Indizes c kritischer Zustand - D Differenz - m Mittelwert - T Isotherme - t Zustand am Tripelpunkt - S Zustand am Schmelzpunkt - bezogen auf Oberfläche  相似文献   

14.
When analyzing stochastic steady flow, the hydraulic conductivity naturally appears logarithmically. Often the log conductivity is represented as the sum of an average plus a stochastic fluctuation. To make the problem tractable, the log conductivity fluctuation, f, about the mean log conductivity, lnK G, is assumed to have finite variance, f 2. Historically, perturbation schemes have involved the assumption that f 2<1. Here it is shown that f may not be the most judicious choice of perturbation parameters for steady flow. Instead, we posit that the variance of the gradient of the conductivity fluctuation, f 2, is more appropriate hoice. By solving the problem withthis parameter and studying the solution, this conjecture can be refined and an even more appropriate perturbation parameter, , defined. Since the processes f and f can often be considered independent, further assumptions on f are necessary. In particular, when the two point correlation function for the conductivity is assumed to be exponential or Gaussian, it is possible to estimate the magnitude of f in terms of f and various length scales. The ratio of the integral scale in the main direction of flow ( x ) to the total domain length (L*), x 2=x/L*, plays an important role in the convergence of the perturbation scheme. For x smaller than a critical value c, x < c, the scheme's perturbation parameter is =f/x for one- dimensional flow, and =f/x 2 for two-dimensional flow with mean flow in the x direction. For x > c, the parameter =f/x 3 may be thought as the perturbation parameter for two-dimensional flow. The shape of the log conductivity fluctuation two point correlation function, and boundary conditions influence the convergence of the perturbation scheme.  相似文献   

15.
Pressure pulsations were measured during in-leakage of a subsonic jet and the subsonic section of a heated supersonic jet on a flat obstacle. Data have been obtained on the total and spectrum levels of the pressure pulsations at different spacings X of the obstacle from the nozzle exit. It is shown that when the obstacle is disposed at the section of the jet where the local velocity is subsonic, the pulsation levels outside the dependence on the conditions at the nozzle exit (Mach number Maxa 0 a 3.0; stagnation temperature T0=280–1200K) vary in direct proportion to the local velocity head q. The ratio between the total level and q is (/g)=0.2–0.3. It is established that for a subsonic velocity ahead of the obstacle, all the spectra obtained for different values of M a , T0, d a and X in the coordinates Sh=f(d/V) and (1*/q)(V/d) will lie on a single generalized spectrum. Here 1* is the pulsation level in a 1-Hz band, and d and V are, respectively, the jet diameter and velocity directly in front of the obstacle.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 172–174, September–October, 1975.  相似文献   

16.
The Stokes problems of an incompressible, viscous, conducting fluid with embedded small spherical particles over an infinite plate, set into motion in its plane by impulse and by oscillation, in the presence of a transverse magnetic field, are studied. The velocities of the fluid and of the particles and the wall shear stress are obtained. The stress is found to increase due to the particles and the magnetic field, with the effect of the particles diminishing as the field strength is increased.Nomenclature H 0 strength of the imposed magnetic field - k density ratio of particles to fluid (per unit volume of flow field) - m e 2 H 0 2 / - t time - y co-ordinate normal to the plate - u fluid velocity - v particle velocity - e magnetic permeability of the fluid - kinematic viscosity of the fluid - electric conductivity of the fluid - fluid density - particle relaxation time - frequency of oscillation of the plate  相似文献   

17.
This paper deals with the problem of stress analysis of plates with a circular hole reinforced by flange reinforcing member. The so called flange reinforcing member here means that the reinforcing member is built up by setting shapes or bars with any section shape on both sides of the plates along the edge of the hole. Two cases of external loads are considered. In one case the external loads are stressesσX(∞)Y(∞),and τXY(∞) acting at infinite point of the plate, and in the other the external loads are linear distributed normal stresses. The procedure of solving the problems mentioned above consists of three steps. Firstly, the reinforcing member is taken out from the plates and considered to be a circular bar being solved to determine its deformation under the action of radial force q0(θ) and tangential force t0(θ) which are forces acting upon each other between reinforcing member and plate. Secondly, the displacements of plate with a circular hole under the action of q0(θ) and t0(θ) and external loads are determined. Finally, forces q0(θ) and t0(θ) are obtained by the compatibility of deformations between reinforcing member and plate. Then the internal forces and displacements of reinforcing member and plate are deduced from q0(θ) and t0(θ) obtained.  相似文献   

18.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

19.
Summary This note presents an exact solution for the stress and displacement field in an unbounded and transversely constrained elastic medium resulting from the motion of a plane heat source travelling through the medium at constant speed in the direction normal to the source plane.Nomenclature mass density - diffusivity - thermal conductivity - Q heat emitted by plane heat source per unit time per unit area - speed of propagation of plane heat source - shear modulus - Poisson's ratio - T temperature - x, y, z normal stress components - u x, uy, uz displacement components - c speed of irrotational waves - t time - x, y, z Cartesian coordinates - =x–vt moving coordinate  相似文献   

20.
Nonlinear bending of circular sandwich plates   总被引:2,自引:0,他引:2  
In this paper, fundamental equations and boundary conditions of nonlinear axisymmetrical bending theory for the circular sandwich plates with a soft core are derived by means of the method of calculus of variations. Especially in the case of very thin faces, the preceding fundamental epuations and boundary conditions simplity considerably. For example, a circular sandwich plate with edge clamped but free to siip under the action of uniform lateral load is considered. A more accurate solution of this problem has been obtained by means of the modified iteration method.Notation r, ,z system of cylindrical coordinates - a radius of plate boundary - t thickness of the face - h thickness of the core - h 0 distance from middle of thickness of lower face to middle of thickness of upper face - E Young's modulus of the face - Poisson's ratio of the face - G 2 shear modulus of the core - D f flexural rigidity of the face - D flexural rigidity of the plate - C shear rigidity of the plate - q uniform lateral load - u i ,v i ,w i(i=1, 2, 3) radial, tangential and normal displacement of upper face, core and lower face, respectively - u radial displacement of the middle plane of the plate - w deflection of the middle plane of the plate - rotation of connecting line of corresponding points in middle planes of two faces - 1i , i , zi , ri , zi , rzi (i=1,2,3) strains at a point of upper face, core and lower face - ri , i , zi , ri , zi , rzi(i=1,2,3) stresses at a point of upper face, core and lower face - r , 0 radial and tangential stress of the middle plane of the plate, respectively - U i(i =1, 2, 3) strain energy of upper face, core and lower face, respectively - V work done by the external force - U total potential energy of the plate - M r radial moment of the plate - Q r shearing force of the plate - m radial moment of the face - stress function - dimensionless radial coordinate - k dimensionless characteristic parameter - W dimensionless deflection - W 0 dimensionless center deflection - S r ,S 0 dimensionless radial and tangential stress, respectively - S r (0),S 0 (0) dimensionless radial and tangential stress at center, respectively - S 0(1) dimensionless tangential stress at edge - P dimensionless uniform lateral load - A 2,A 3,B 2,B 3,a 1,.....,a 2, 1, 2,l 1,1,...l 1 1,3,m 1,...,m 33,n 0,2,...n 22,6,R 1,,...R 33 auxiliary quantity - L differential operator  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号