首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
[reaction: see text] Bis(dipyrromethene)s with relatively long spacers (>5 atoms) form helical monomeric complexes as the two binding units of the bis(dipyrromethene) chelate around the same tetrahedrally coordinated metal ion. Herein we report the first highly diastereoselective mononuclear helicate-forming complexation reactions of bis(dipyrromethene)s using homochiral binol and tartrate motifs which serve as both linkers and asymmetric templates.  相似文献   

2.
[structure: see text] A series of bis(dipyrromethene)s substituted with aromatic amide and aliphatic ester homochiral auxiliaries have been prepared and complexed with zinc(II) ions to form double-helical dinuclear complexes. CD analysis of the crude complexes revealed that the helicates formed in a diastereoselective manner. The helicates have been resolved into their constituent M and P helices by HPLC, indicating that the helical sense of the complexes is stable to racemization.  相似文献   

3.
The synthesis and characterization of various triads composed of a linear array of two zinc porphyrins joined via an intervening bis(dipyrrinato)metal(II) complex are reported. The preparation exploits the facile complexation of dipyrrins with divalent metal ions to give bis(dipyrrinato)metal(II) complexes [abbreviated (dp)(2)M]. Copper(II) and palladium(II) chelates of dipyrrins (available by oxidation of dipyrromethanes) were prepared in 50-80% yield. A one-flask synthesis of bis(dipyrrinato)zinc(II) complexes was developed by oxidation of a dipyrromethane with DDQ or p-chloranil in the presence of Zn(OAc)(2).2H(2)O in THF ( approximately 80% yield). Three routes were developed for preparing porphyrin-dipyrrins: (1). Suzuki coupling of a boronate-substituted zinc porphyrin (ZnP) and bis[5-(4-iodophenyl)dipyrrinato]Pd(II) to give the (ZnP-dp)(2)Pd triad (50% yield), followed by selective demetalation of the (dp)(2)Pd unit by treatment with 1,4-dithiothreitol under neutral conditions (71% yield); (2). oxidation of a porphyrin-dipyrromethane with p-chloranil in the presence of Zn(OAc)(2).2H(2)O followed by chromatography on silica gel (71% yield); and (3). condensation of a dipyrrin-dipyrromethane and a dipyrromethane-dicarbinol under InCl(3) catalysis followed by oxidation with DDQ (10-16% yield). Four triads of form (ZnP-dp)(2)Zn were prepared in 83-97% yield by treatment of a porphyrin-dipyrrin with Zn(OAc)(2).2H(2)O at room temperature. Free base dipyrrins typically absorb at 430-440 nm, while the bis(dipyrrinato)metal complexes absorb at 460-490 nm. The fluorescence spectra/yields and excited-state lifetimes of the (ZnP-dp)(2)Zn triad in toluene show (1). efficient energy transfer from the bis(dipyrrinato)zinc(II) chromophore to the zinc porphyrins (98.5% yield), and (2). little or no quenching of the resulting excited zinc porphyrin relative to the isolated chromophore. Taken together, these results indicate that bis(dipyrrinato)zinc(II) complexes can serve as self-assembling linkers that further function as secondary light-collection elements in porphyrin-based light-harvesting arrays.  相似文献   

4.
Kiehne U  LUtzen A 《Organic letters》2007,9(26):5333-5336
Difunctionalization of D-isomannide yielded a bis(bipyridine) ligand bearing four stereogenic centers whose diastereoselective self-assembly to enantiomerically pure dinuclear helicates upon coordination to different metal ions was investigated by NMR and CD spectroscopic as well as ESI mass spectrometric methods.  相似文献   

5.
The dinucleating ligand 1,3-bis[bis(pyridin-2-ylmethyl)amino] propan-2-ol (I, LOH) is becoming of increasing interest due to the exceptional phosphate monoester binding and phosphate diester hydrolytic properties of its dizinc(II) complexes in water. Potentiometric pH titrations using a range of Zn:I ratios reveals the formation of mononuclear and dinuclear metal complexes. In fact, when the Zn:I ratio is 1:1 only mononuclear complexes are formed. Previous work reported the formation of only dinuclear species. Thus, the results presented here should be important to interpret correctly and more accurately phosphate ester binding and hydrolysis data. Moreover, based on these findings we suggest that the phosphate binding and hydrolytic properties of mixtures containing Zn(II) ions and I should depend not only on the pH but also on the Zn:I ratio used.  相似文献   

6.
Fourteen different ligands have been synthesized with two covalently linked 8-hydroxyquinoline motifs that favor metal complexation. These bis-chelators include different bridges at the C2 positions and different substituents to modulate their physicochemical properties. They can form metal complexes in a ratio of one ligand per metal ion with Cu II and Zn II, two metal ions involved in the formation of amyloid aggregates of the toxic Abeta-peptides in the Alzheimer disease. The apparent affinity of all bis-8-hydroxyquinoline ligands for Cu II and Zn II are similar with logK Cu II approximately 16 and logK Zn II approximately 13 and are 10,000 times more efficient than for the corresponding 8-hydroxyquinoline monomers. Their strong chelating capacities allow them to inhibit more efficiently than the corresponding monomers the precipitation of Abeta-peptides induced by Cu II and Zn II and also to inhibit the toxic formation of H2O2 due to copper complexes of Abeta. The best results were obtained with a one-atom linker between the two quinoline units. X-ray analyses of single-crystals of Cu II, Zn II or Ni II complexes of 2,2'-(2,2-propanediyl)-bis(8-hydroxyquinoline), including a one-atom linker, showed that all heteroatoms of the bis-8-hydroxyquinoline ligand chelate the same metal ion in a distorted square-planar geometry. The Cu II and Zn II complexes include a fifth axial ligand and are pentacoordinated.  相似文献   

7.
Benzenehexapyrrole‐α,ω‐dialdehyde, composed of a pair of formyltripyrrole units with a 1,3‐phenylene linker, was metallated to give dinuclear single‐stranded helicates. X‐ray studies of the bis‐nickel(II) complex showed a helical C2 form with a pair of helical–metal coordination planes of a 3N+O donor set. The terminal aldehyde was readily converted into the imine by optically active amines, whereby helix‐sense bias was induced. Bis‐nickel(II) and bis‐palladium(II) complexes of the benzenehexapyrrole‐α,ω‐diimines were studied to show that an enantiomer pair of the helical C2 form are interchanged by slow flipping of each coordination plane and fast rotation around the C(benzene)?C(pyrrole) bond. The helical screw in the bis‐nickel(II) complexes was biased to one side in more than 95 % diastereoselectivity, which was achieved by using a variety of optically active amines, such as (R)‐1‐cyclohexylethylamine, (S)‐1‐ phenylethylamine, L ‐Phe(OEt) (Phe=phenylalanine), and (R)‐valinol. The nickel complexes showed much better diastereoselectivity than the corresponding palladium complexes.  相似文献   

8.
The synthesis and characterisation of the new macrocyclic ligand 6-methyl-2,6,10-triaza-[11]-12,25-phenathrolinophane (L1), which contains a triamine aliphatic chain linking the 2,9 positions of 1,10-phenanthroline and of its derivative L2, composed by two L1 moieties connected by an ethylenic bridge, are reported. Their basicity and coordination properties toward Cu(II), Zn(II), Cd(II), Pb(II) and Hg(II) have been studied by means of potentiometric and spectroscopic (UV-Vis, fluorescence emission) measurements in aqueous solutions. L1 forms 1:1 metal complexes in aqueous solutions, while L2 can give both mono- and dinuclear complexes. In the mononuclear L2 complexes the metal is sandwiched between the two cyclic moieties. The metal complexes with L1 and L2 do not display fluorescence emission, due to the presence of amine groups not involved in metal coordination. These amine groups can quench the excited fluorophore through an electron transfer process. The ability of the Zn(II) complexes with L1 and L2 to cleave the phosphate ester bond in the presence has been investigated by using bis(p-nitrophenyl)phosphate (BNPP) as substrate. The dinuclear complex with L2 shows a remarkable hydrolytic activity, due to the simultaneous presence within this complex of two metals and two hydrophobic units. In fact, the two Zn(II) act cooperatively in substrate binding, probably through a bridging interaction of the phosphate ester; the interaction is further reinforced by pi-stacking pairing and hydrophobic interactions between the phenanthroline unit(s) and the p-nitrophenyl groups of BNPP.  相似文献   

9.
采用具有潜在异构手性的双臂配体,双吡啶二甲基联苯-2,2′-二酰肼,合成了4个双核螺旋配合物。配体与CdI2和Cu(NO3)2反应得到双核单螺旋化合物12,在化合物2中,由于C-H…π和π…π的协同相互作用沿ab面形成单一手性的二维平面。双核双螺旋化合物3(Ni(Ⅱ))和4(Co(Ⅱ))中的金属中心表现相同的绝对构型,说明含异构手性的配体能够把金属中心的手性从一个中心传递到另一个中心。  相似文献   

10.
The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.  相似文献   

11.
Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.  相似文献   

12.
Dipyrromethene metal complexes are fascinating molecules that have applications as light-harvesting systems, luminophores, and laser dyes. Recently, it has been shown that structurally rigid bis(dipyrrinato) zinc(II) complexes exhibit high fluorescence with comparable quantum yields to those of boron dipyrromethenes or BODIPYs. Herein, eight new bis(dipyrrinato) ZnII complexes, obtained from symmetric and unsymmetrical functionalization of the dipyrromethene structure through a Knoevenagel reaction, are reported. It was possible not only to vary the maximum visible absorption from 490 to 630 nm, but also to enhance the emission quantum yield up to 66 %, which is extraordinarily high for homoleptic bis(dipyrrinato) zinc complexes. These results pave the way for designing highly luminescent bis(dipyrrinato) zinc complexes.  相似文献   

13.
An enantiomerically pure diamine based on the 4,15-difunctionalized [2.2]paracyclophane scaffold and 2-formylpyridine self-assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self-assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple-stranded helicate, and hence, leads to the larger strain-free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic chiral self-sorting manner given the fact that the assembly contains ten stereogenic elements, which can in principle give rise to 149 different diastereomers. The metallosupramolecular aggregates could be characterized by NMR, UV/Vis and CD spectroscopy, mass spectrometry, and X-ray crystallography.  相似文献   

14.
The synthesis and characterization of three new bis([9]aneN(3)) ligands, containing respectively 2,2'-bipyridine (L(1)), 1,10-phenanthroline (L(2)), and quinoxaline (L(3)) moieties linking the two macrocyclic units, are reported. Proton binding and Cu(II), Zn(II), Cd(II), and Pb(II) coordination with L(1)-L(3) have been studied by potentiometric titrations and, for L(1) and L(2), by spectrophotometric UV-vis measurements in aqueous solutions. All ligands can give stable mono- and dinuclear complexes. In the case of L(1), trinuclear Cu(II) complexes are also formed. The stability constants and structural features of the formed complexes are strongly affected by the different architecture and binding properties of the spacers bridging the two [9]aneN(3) units. In the case of the L(1) and L(2) mononuclear complexes, the metal is coordinated by the three donors of one [9]aneN(3) moiety; in the [ML(2)](2+) complexes, however, the phenanthroline nitrogens are also involved in metal binding. Finally, in the [ML(3)](2+) complexes both macrocyclic units, at a short distance from each other, can be involved in metal coordination, giving rise to sandwich complexes. In the binuclear complexes each metal ion is generally coordinated by one [9]aneN(3) unit. In L(1), however, the dipyridine nitrogens can also act as a potential binding site for metals. The dinuclear complexes show a marked tendency to form mono-, di-, and, in some cases, trihydroxo species in aqueous solutions. The resulting M-OH functions may behave as nucleophiles in hydrolytic reactions. The hydrolysis rate of bis(p-nitrophenyl)phosphate (BNPP) was measured in aqueous solution at 308.1 K in the presence of the L(2) and L(3) dinuclear Zn(II) complexes. Both the L(2) complexes [Zn(2)L(2)(OH)(2)](2+) and [Zn(2)L(2)(OH)(3)](+) and the L(3) complex [Zn(2)L(3)(OH)(3)](+) promote BNPP hydrolysis. The [Zn(2)L(3)(OH)(3)](+) complex is ca. 2 orders of magnitude more active than the L(2) complexes, due both to the short distance between the metal centers in [Zn(2)L(3)(OH)(3)](+), which could allow a bridging interaction of the phosphate ester, and to the simultaneous presence of single-metal bound nucleophilic Zn-OH functions. These structural features are substantially corroborated by semiempirical PM3 calculations carried out on the mono-, di-, and trihydroxo species of the L(3) dizinc complex.  相似文献   

15.
Helical zinc(II) complexes of bis(dipyrromethene)s bearing homochiral amide substituents were synthesized. Analysis of the products by chiral HPLC showed two diastereomeric major products and showed that dipyrromethene double-nuclear helicates are stereochemically stable and do not interconvert. Circular dichroism (CD) studies showed that the complexation reactions had proceeded with modest diastereomeric excesses. Analysis of an analogous symmetric zinc(II) bis(dipyrromethene) lacking homochiral substituents that could act as chromophores discounted induced CD by the chiral auxiliaries.  相似文献   

16.
A series of ligands containing linked 1,4,7-triazacyclononane macrocycles are studied for the preparation of dinuclear Zn(II) complexes including 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (L2OH), 1,5-bis(1,4,7-triazacyclonon-1-yl)pentane (L3), 2,9-bis(1-methyl-1,4,7-triazacyclonon-1-yl)-1,10-phenanthroline (L4), and alpha,alpha'-bis(1,4,7-triazacyclonon-1-yl)-m-xylene (L5). The titration of these ligands with Zn(NO(3))(2) was monitored by (1)H NMR. Each ligand was found to bind two Zn(II) ions with a very high affinity at near neutral pH under conditions of millimolar ligand and 2 equiv of Zn(NO(3))(2). In contrast, a stable mononuclear complex was formed in solutions containing 5.0 mM L2OH and 1 equiv of Zn(NO(3))(2). (1)H and (13)C NMR spectral data are consistent with formation of a highly symmetric mononuclear complex Zn(L2OH) in which a Zn(II) ion is sandwiched between two triazacyclononane units. The second-order rate constant k(Zn) for the cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) at pH 7.6 and 25 degrees C catalyzed by Zn(2)(L2O) is 120-fold larger than that for the reaction catalyzed by the closely related mononuclear complex Zn(L1) (L1 = 1,4,7-triazacyclononane). By comparison, the observation that the values of k(Zn) determined under similar reaction conditions for cleavage of HPNP catalyzed by the other Zn(II) dinuclear complexes are only 3-5-fold larger than values of k(Zn) for catalysis by Zn(L1) provides strong evidence that the two Zn(II) cations in Zn(2)(L2O) act cooperatively in the stabilization of the transition state for cleavage of HPNP. The extent of cleavage of an oligoribonucleotide by Zn(L1), Zn(2)(L5), and Zn(2)(L2O) at pH 7.5 and 37 degrees C after 24 h incubation is 4,10, and 90%. The rationale for the observed differences in catalytic activity of these dinuclear Zn(II) complexes is discussed in terms of the mechanism of RNA cleavage and the structure and speciation of these complexes in solution.  相似文献   

17.
Heteroleptic zinc(II) complexes synthesized using achiral dipyrrinato and chiral bis(oxazoline) ligands show bright fluorescence with quantum efficiencies of up to 0.70. The fluorescence originates from the 1π–π* photoexcited state localized exclusively on the dipyrrinato ligand. Furthermore, the luminescence is circularly polarized despite the achirality of the dipyrrinato ligand. Single‐crystal X‐ray structure analysis discloses that the chiral bis(oxazoline) ligand undergoes intramolecular π–π stacking with the dipyrrinato ligand, inducing axial chirality in the dipyrrinato moiety.  相似文献   

18.
Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex (Zn2L3+) has been studied (L = alkoxide species of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-ol). Potentiometric pH titration study disclosed a 1 : 1 phenyl phosphate complexation with Zn2L3+ in aqueous solution. The dissociation constant (= [Zn2L3+][PhOPO3(2-)]/[Zn2L3+-PhOPO3(2-)]) is an extremely small value of 2.5 x 10(-8) mol dm(-3) at 25 degrees C with I = 0.10 (NaNO3). The X-ray crystal analysis of the dizinc(II) complex with p-nitrophenyl phosphate showed that the phosphate dianion binds as a bridging ligand to the two zinc(II) ions.  相似文献   

19.
Herein we present an improved synthesis of 5,5'-diamino-2,2'-bipyridine (1) starting from the pyrrole-protected aminopyridine 4. By standard reactions 1 can easily be transformed into the imine- or amide-bridged dicatechol-bipyridine ligands L1-H4 and L2-H4. Whereas ligand L1 readily forms homodinuclear helicates [(L1)3Ti2]4-, the attempted formation of mono-, tri-, or even oligonuclear coordination compounds from this ligand did not work. However, the amide-connected ligand L2 affords mononuclear ([(L2-H4)PdCl2], [(L2-H4)3Zn]2+), dinuclear ([(L2)3Ti2]4-), and heterotrinuclear coordination compounds ([(L2)3Ti2Zn]2-).  相似文献   

20.
[structure: see text]. Several ligands based on the rigid, V-shaped structure of Tr?ger's base bearing 2,2'-bipyridine and 2-pyridylmethanimine moieties have been synthesized. These ligands undergo diastereoselective self-assembly to dinuclear double-stranded D2d-symmetric helicates upon coordination to copper(I) and silver(I) ions as elucidated by NMR techniques and ESI mass spectrometric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号