首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensation of monovalent counterions around DNA influences polymer properties of the DNA chain. For example, the Na(+) ions show markedly stronger propensity to induce multiple DNA chains to assemble into compact structures compared with the K(+) ions. To investigate the similarities and differences in the sodium and potassium ion condensation around DNA, we carried out a number of extensive all-atom molecular dynamics simulations of a DNA oligomer consisting of 16 base pairs, [d(CGAGGTTTAAACCTCG)](2), in explicit water. We found that the Na(+) ions penetrate the DNA interior and condense around the DNA exterior to a significantly larger degree compared with the K(+) ions. We have provided a microscopic explanation for the larger Na(+) affinity toward DNA that is based on a combination of steric, electrostatic, and hydration effects. Unexpectedly, we found that the Cl(-) co-ions provide more efficient electrostatic screening for the K(+) ions than for the Na(+) ions, contributing to the larger Na(+) condensation around DNA. To examine the importance of the discrete nature of water and ions, we also computed the counterion distributions from the mean-field electrostatic theory, demonstrating significant disagreements with the all-atom simulations. Prior experimental results on the relative extent of the Na(+) and K(+) condensation around DNA were somewhat contradictory. Recent DNA compaction experiments may be interpreted to suggest stronger Na(+) condensation around DNA compared to K(+), which is consistent with our simulations. We also provide a simple interpretation for the experimentally observed increase in DNA electrophoretic mobility in the alkali metal series, Li(+) < Na(+) < K(+) < Rb(+). We compare the DNA segment conformational preferences in various buffers with the proposed NMR models.  相似文献   

2.
The effects of the medium ionic composition on the apparent equilibrium association constant (K) for the formation of a 1:1 inclusion complex between the guest methyl viologen (MV(2+)) and the host cucurbit[7]uril (CB7) were studied in aqueous solutions. The K values were found to decrease with increasing ionic strength, with more pronounced effects for solutions containing divalent Ca(2+) ions than for solutions containing monovalent Na(+) ions. The competing ion-dipole interactions between Ca(2+) or Na(+) and MV(2+) ions appear to be responsible for the remarkable modulation of the K values observed in this work.  相似文献   

3.
Different solvent temperatures with five kinds of counterions are used to investigate solvent effects on the DNA microscopic structure. The dodecamer d (CGCGAATTCGCG) DNA segment is merged into the solvents and its conformation transition is studied with the molecular dynamics simulations in detail. For the simple point charge model of water molecule with Na(+) counterions, as temperature increases from 200 K to 343 K, the duplex DNA changes from stiff B form to a state between A form and B form, which we define as mixed (A-B) structure, with a double helix unwinding. To study the counterions effects, other four alkali cations, Li(+), K(+), Rb(+), or Cs(+) ions, are substituted for Na(+) ions at 298 K and 343 K, respectively. For the cases of Li(+), Rb(+), and Cs(+) ions, the duplex DNA becomes more flexible with sugar configuration changing form C2'-endo to C1'-endo type and the width and depth of minor groove at CpG and GpC steps moving towards A values, as the mass of the counterions decreasing. For the case of K(+) ions, DNA-K(+) interaction widens the width of minor and major grooves at ApA steps and TpT steps, respectively. It seems that the light ions (Li(+) or Na(+)) prefer to interact with the free phosphate oxygen atoms while the heavier ions (Rb(+) and Cs(+)) strongly interact with the base pairs.  相似文献   

4.
Understanding biological membranes at physiological conditions requires comprehension of the interaction of lipid bilayers with sodium and potassium ions. These cations are adsorbed at palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers as indicated from previous studies. Here we compare the affinity of Na(+) and K(+) for POPC in molecular dynamics (MD) simulations with recent data from electrophoresis experiments and isothermal calorimetry (ITC) at neutral pH. NaCl and KCl were described using GROMOS or parameters matching solution activities on the basis of Kirkwood-Buff theory (KBFF), and K(+) was also described using parameters by Dang et al., all in conjunction with the Berger parameters for the lipids and the SPC water model. Apparent binding constants of GROMOS-Na(+) and KBFF-K(+) are the same within error and in good agreement with values from ITC. Although these force fields yield the same number of bound ions per number of lipids for Na(+) and K(+), they give a larger number of Na(+) ions per surface area compared to K(+), in agreement with the electrophoresis experiments, because Na(+) causes a stronger reduction in the area per lipid than K(+). The intrinsic binding constants, on the other hand, are reproduced by Dang-K(+) but overestimated by GROMOS-Na(+) and KBFF-K(+). That no ion force field reproduces the intrinsic and the apparent binding constant simultaneously arises from the fact that in MD simulations, implicitly meant to mimic neutral pH, pure PC is usually modeled with zero surface charge. In contrast, POPC at neutral conditions in experiment carries a low but significant negative surface charge and is uncharged only at acidic pH as indicated from electrophoretic mobilities. Implications for future simulation and experimental studies are discussed.  相似文献   

5.
The "three sites per nucleotide" (3SPN) model provides a coarse-grained representation of nucleic acids for simulation of molecular processes. Previously, this model has relied on an implicit representation of the surrounding ionic environment at the level of Debye-Hu?ckel theory. In this work, we eliminate this limitation and present an explicit representation of ions, both monovalent and divalent. The coarse-grain ion-ion and ion-phosphate potential energy functions are inferred from all-atom simulations and parameterized to reproduce key features of the local structure and organization of ions in bulk water and in the presence of DNA. The resulting model, 3SPN.1-I, is capable of reproducing the local structure observed in detailed atomistic simulations, as well as the experimental melting temperature of DNA for a range of DNA oligonucleotide lengths, CG-content, Na(+) concentration, and Mg(2+) concentration.  相似文献   

6.
Here, we present a systematic study combing electrospray ionization-ion mobility experiments and an enhanced sampling molecular dynamics, specifically integrated tempering sampling molecular dynamics simulations (ITS-MDS), to explore the conformations of alkali metal ion (Na, K, and Cs) adducts of gramicidin A (GA) in vacuo. Folding simulation is performed to obtain inherent conformational preferences of neutral GA to provide insights about how the binding of metal ions influences the intrinsic conformations of GA. The comparison between conformations of neutral GA and alkali metal ion adducts reveals a high degree of structural similarity, especially between neutral GA and [GA + Na](+); however, the structural similarities decrease as ionic radius of the metal increases. Collision cross section (CCS) profiles for [GA + Na](+) and [GA + Cs](+) ions obtained from by ITS-MDS compare favorably with the experimental CCS, but there are significant differences from CCS profiles for [GA + K](+) ions. Such discrepancies between the calculated and measured CCS profiles for [GA + K](+) are discussed in terms of limitations in the simulation force field as well as possible size-dependent coordination of the [GA + K](+) ion complex.  相似文献   

7.
Structural and dynamical properties of the hydration of Li(+), Na(+), and K(+) in liquid water at ambient conditions were studied by first principles molecular dynamics. Our simulations successfully captured the different hydration behavior shown by the three alkali ions as observed in experiments. The present analyses of the dependence of the self-diffusion coefficient and rotational correlation time of water on the ion concentration suggest that Li(+) (K(+)) is certainly categorized as a structure maker (breaker), whereas Na(+) acts as a weak structure breaker. An analysis of the relevant electronic structures, based on maximally localized Wannier functions, revealed that the dipole moment of H(2)O molecules in the first solvation shell of Na(+) and K(+) decreases by about 0.1 D compared to that in the bulk, due to a contraction of the oxygen lone pair orbital pointing toward the metal ion.  相似文献   

8.
Changed ion hydration properties near surfaces, proteins, and deoxyribose nucleic acid have been reported before in the literature. In the present work, we extend this work to carbohydrates: We have performed classical-mechanical molecular dynamics simulations to study solvation properties of simple cations of biological relevance (Na(+),K(+),Mg(2+),Ca(2+)) in explicit water, near single and multiple oligosaccharides as glycocalyx models. We find that our oligosaccharides prefer direct contact with K(+) over Na(+), but that the Na(+) contacts are longer lived. These interactions also lead to strong but short-lived changes in oligosaccharide conformations, with oligosaccharides wrapping around K(+) with multiple contacts. These findings may have implications for current hypotheses on glycocalyx functions.  相似文献   

9.
Molecular-dynamics simulations of Cl(-) and Na(+) ions are performed to calculate ionic solvation free energies in both bulk simple point-charge/extended water and ice 1 h at several different temperatures, and at the basal ice 1 h/water interface. For the interface we calculate the free energy of "transfer" of the ions across the ice/water interface. For the ions in bulk water in the NPT ensemble at 298 K and 1 atm, results are found to be in good agreement with experiments, and with other simulation results. Simulations performed in the NVT ensemble are shown to give equivalent solvation free energies, and this ensemble is used for the interfacial simulations. Solvation free energies of Cl(-) and Na(+) ions in ice at 150 K are found to be approximately 30 and approximately 20 kcal mol(-1), respectively, less favorable than for water at room temperature. Near the melting point of the model the solvation of the ions in water is the same (within statistical error) as that measured at room temperature, and in the ice is equivalent and approximately 10 kcal mol(-1) less favorable than the liquid. The free energy of transfer for each ion across ice/water interface is calculated and is in good agreement with the bulk observations for the Cl(-) ion. However, for the model of Na(+) the long-range electrostatic contribution to the free energy was more negative in the ice than the liquid, in contrast with the results observed in the bulk calculations.  相似文献   

10.
Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase that requires two cofactor Mg(2+) ions for catalysis in regulating many important cellular signals. Experimentally, Li(+) is a competitive inhibitor of GSK3β relative to Mg(2+), while this mechanism is not experienced with other group I metal ions. Herein, we use native Mg(2)(2+)-Mg(1)(2+) GSK3β and its Mg(2)(2+)-M(1)(+) (M = Li, Na, K, and Rb) derivatives to investigate the effect of metal ion substitution on the mechanism of inhibition through two-layer ONIOM-based quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations. The results of ONIOM calculations elucidate that the interaction of Na(+), K(+), and Rb(+) with ATP is weaker compared to that of Mg(2+) and Li(+) with ATP, and the critical triphosphate moiety of ATP undergoes a large conformational change in the Na(+), K(+), and Rb(+) substituted systems. As a result, the three metal ions (Na(+), K(+), and Rb(+)) are not stable and depart from the active site, while Mg(2+) and Li(+) can stabilize in the active site, evident in MD simulations. Comparisons of Mg(2)(2+)-Mg(1)(2+) and Mg(2)(2+)-Li(1)(+) systems reveal that the inline phosphor-transfer of ATP and the two conserved hydrogen bonds between Lys85 and ATP, together with the electrostatic potential at the Li(1)(+) site, are disrupted in the Mg(2)(2+)-Li(1)(+) system. These computational results highlight the possible mechanism why Li(+) inhibits GSK3β.  相似文献   

11.
Guanine tetraplexes are biological non-covalent systems stabilized by alkali cations. Thus, self-clustering of guanine, xanthine and hypoxanthine with alkali cations (Na(+), K(+) and Li(+)) is investigated by electrospray ionization mass spectrometry (ESI-MS) in order to provide new insights into G-quartets, hydrogen-bonded complexes. ESI assays displayed magic numbers of tetramer adducts with Na(+), Li(+) and K(+), not only for guanine, but also for xanthine bases. The optimized structures of guanine and xanthine quartets have been determined by B3LYP hybrid density functional theory calculations. Complexes of metal ions with quartets are classified into different structure types. The optimized structures obtained for each quartet explain the gas-phase results. The gas-phase binding sequence between the monovalent cations and the xanthine quartet follows the order Li(+) > Na(+) > K(+), which is consistent with that obtained for the guanine quartet in the literature. The smallest stabilization energy of K(+) and its position versus the other alkali metal ions in guanine and xanthine quartets is consistent with the fact that the potassium cation can be located between two guanine or xanthine quartets, for providing a [gua(or (xan))(8)+K](+) octamer adduct. Even if an abundant octamer adduct with K(+) for xanthine was detected by ESI-MS, it was not the case for guanine.  相似文献   

12.
The structure of a single alanine-based Ace-AEAAAKEAAAKA-Nme peptide in explicit aqueous electrolyte solutions (NaCl, KCl, NaI, and KF) at large salt concentrations (3-4 M) is investigated using approximately 1 mus molecular dynamics (MD) computer simulations. The peptide displays 71% alpha-helical structure without salt and destabilizes with the addition of NaCl in agreement with experiments of a somewhat longer version. It is mainly stabilized by direct and indirect (" i + 4")EK salt bridges between the Lys and Glu side chains and a concomitant backbone shielding mechanism. NaI is found to be a stronger denaturant than NaCl, while the potassium salts hardly show influence. Investigation of the molecular structures reveals that consistent with recent experiments Na (+) has a much stronger affinity to side chain carboxylates and backbone carbonyls than K (+), thereby weakening salt bridges and secondary structure hydrogen bonds. At the same time, the large I (-) has a considerable affinity to the nonpolar alanine in line with recent observations of a large propensity of I (-) to adsorb to simple hydrophobes, and thereby "assists" Na (+) in its destabilizing action. In the denatured states of the peptide, novel long-lived (10-20 ns) "loop" configurations are observed in which single Na (+) ions and water molecules are hydrogen-bonded to multiple backbone carbonyls. In an attempt to analyze the denaturation behavior within the preferential interaction formalism, we find indeed that for the strongest denaturant, NaI, the protein is least hydrated. Additionally, a possible indication for protein denaturation might be a preferential solvation of the peptide backbone by the destabilizing cosolute (sodium). The mechanisms found in this work may be of general importance to understand salt effects on protein secondary structure stability.  相似文献   

13.
The chemical-physical basis of loading and release of K(+) and Na(+) ions in and out of the selectivity filter of the K(+) channel has been investigated using the B3LYP method of density functional theory. We have shown that the difference between binding free energies of K(+) and Na(+) to the cavity end of the filter is smaller than the difference between the K(+) and Na(+) solvation free energies. Thus, the loading of K(+) ions into the cavity end of the selectivity filter from the solution phase is suggested to be selective prior to the subsequent conduction process. It is shown that the extracellular end of the filter is only optimal for K(+) ions, because K(+) ions prefer the coordination environment of eight carbonyl oxygens. Na(+) ions do not fit into the extracellular end of the filter, since they prefer the coordination environment of six carbonyl oxygens. Overall, the results suggest that the rigid C(4) symmetric selectivity filter is specifically designed for conduction of K(+) ions.  相似文献   

14.
The binding affinity and selectivity of a new ionophore, [1(8)]starand (1), toward alkali metal cations in methanol were examined through NMR titration experiments and free energy perturbation (FEP) and molecular dynamics simulations. The preference was determined to be K(+) > Rb(+) > Cs(+) > Na(+) > Li(+) in both FEP simulations and NMR experiments. The FEP simulation results were able to predict the relative binding free energies with errors less than 0.13 kcal/mol, except for the case between Li(+) and Na(+). The cation selectivity was rationalized by analyzing the radial distribution functions of the M-O and M-C distances of free metal cations in methanol and those of metal-ionophore complexes in methanol.  相似文献   

15.
We report a solid-state (23)Na NMR study of monovalent cation (Li(+), Na(+), K(+), Rb(+), Cs(+) and NH(4) (+)) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0-10%. Results from (23)Na--(31)P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of CT DNA and are partially dehydrated. On the basis of solid-state (23)Na NMR titration experiments, we obtain quantitative thermodynamic parameters concerning the cation-binding affinity for the phosphate group of CT DNA. The free energy difference (DeltaG degrees ) between M(+) and Na(+) ions is as follows: Li(+) (-1.0 kcal mol(-1)), K(+) (7.2 kcal mol(-1)), NH(4) (+) (1.0 kcal mol(-1)), Rb(+) (4.5 kcal mol(-1)) and Cs(+) (1.5 kcal mol(-1)). These results suggest that, at low relative humidity, the binding affinity of monovalent cations for the phosphate group of CT DNA follows the order: Li(+) > Na(+) > NH(4) (+) > Cs(+) > Rb(+) > K(+). This sequence is drastically different from that observed for CT DNA in solution. This discrepancy is attributed to the different modes of cation binding in dry and wet states of DNA. In the wet state of DNA, cations are fully hydrated. Our results suggest that the free energy balance between direct cation-phosphate contact and dehydration interactions is important. The reported experimental results on relative ion-binding affinity for the DNA backbone may be used for testing theoretical treatment of cation-phosphate interactions in DNA.  相似文献   

16.
The internal mobility gives the rate at which one ionic species moves relative to the other species present in an ionic mixture, it mirrors the differential strength of the interactions between different ionic species. In this work we examine the dependence of the internal mobilities of the Li(+) and K(+) ions on the composition in molten mixtures of LiF and KF. We compare them to the behaviour of the individual diffusion coefficients and the self-exchange velocities, which measure the rate at which an ion separates from its nearest-neighbour coordination shell. The examination is made using molecular dynamics simulations with polarizable, first-principles parameterised interaction potentials which are shown to reproduce the limited available experimental data on the transport properties of these mixtures extremely well. The results confirm that the composition-dependence of the internal mobilities in LiF/KF follows the unusual type-II behaviour, which is not reflected in that of the diffusion coefficients or the self-exchange velocities.  相似文献   

17.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectra of small kappa-carrageenans are reported and discussed. MALDI spectra can be obtained in both positive and negative ion mode. In the absence of extraneous metal ions, positive ions are formed by the attachment of one Na(+) ion to the carrageenan, whereas for negative ions one Na(+) ion is detached from the sulfate group. Multiply charged species are not observed in MALDI. Intense ESI spectra can be obtained in negative ion mode and now multiply charged species are seen. Alkali exchange experiments show that in these small carrageenan anions one, but only one, alkali metal ion is bound in a bidentate coordination with two ionic sulfate groups. G2-type ab initio calculations on model ions HO(-) [M(+)] (-)OH (M = Li, Na, K, Cs), as well as arguments based on a simple Coulombic interaction model, show that the bidentate stabilization energy drops rapidly as the size of the alkali cation increases. Exchange of Na(+) with Li(+) leads to expulsion of the Na(+) ion generating, in ESI, intense multiply charged anions. An attempt is made to rationalize this behavior in terms of hydration effects.  相似文献   

18.
The effects of replacing the native Na(+) counter ions associated with the clay platelets by various other cations on the swelling behavior of nanocomposite (NC) gels consisting of an organic (polymer)/inorganic (clay) network were investigated. The negative surface charge of the clay platelet conferred an ionic nature on the NC gels making them a type of polyelectrolyte gel; consequently, the swelling behavior of the NC gels was strongly influenced by the valence of the co-existing counter ions. NC gels containing monovalent cations such as Na(+), K(+) and Li(+) exhibited large swellings and subsequent deswelling in water after attaining maximum degrees of swelling. In contrast, introduction of multivalent cations such as Ca(2+), Mg(2+), and Al(3+) into NC gels depressed markedly both the swelling and subsequent deswelling. The decreased swelling and suppressed deswelling with multivalent ions were strongly influenced by the initial gel state and result from the formation of additional cross-links through ionic interactions between the clay platelets and the multivalent cations. Also, the similar swelling behaviors were observed for all NC gels with different clay concentration. Further, reversible absorption/desorption and selective absorption of multivalent cations were observed for the NC gels examined.  相似文献   

19.
KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter could limit conduction at high concentration. Although some experimental data from other authors were included to allow qualitative comparison with model calculations, the absolute values of the effective rate constants obtained are only tentative. However, the relative changes in these constants needed to explain qualitatively the experiments should be of significance.  相似文献   

20.
Gas-phase metal affinities of DNA and RNA bases for the Na(+) and K(+) ions were determined at density functional level employing the hybrid B3LYP exchange correlation potential in connection with the 6-311+G(2df,2p) basis set. All the molecular complexes, obtained by the interaction between several low-lying tautomers of nucleic acid bases and the alkali ions on the different binding sites, were considered. Structural features of the sodium and potassium complexes were found to be similar except in some uracil and thymine compounds in which the tendency of potassium ion toward monocoordination appeared evident. B3LYP bond energies for both metal ions were in agreement with the available experimental results in the cases of uracil and thymine for which the most stable complex was obtained starting from the most stable tautomer of the free nucleic acid base. For adenine, although the interaction of the ions with the most stable free tautomer generated the least stable molecular complex, the best agreement with experiment was found in just this case. For the remaining cytosine and guanine bases, our calculations indicated that the metal ion affinity value closest to experiment should be determined taking into account the role played by the different tautomers of the free bases with similar energy and all the possible complexes obtained by them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号