首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.  相似文献   

2.
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.  相似文献   

3.
Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.  相似文献   

4.
Zhu H  Jiang L  Tao S  Lin H  Wang J  Tan F  Zhao K  Wu X  Li P  Pan A  Jia J  Tang X 《Journal of AOAC International》2011,94(4):1227-1232
The validation of the anthocyanin synthase (ANS) gene as a carnation endogenous reference gene applicable both in classical and real-time PCR methods is a prerequisite for the development of PCR assays for genetically modified (GM) carnation detection. This is important due to the fact that GM carnation lines, developed by Florigene Pty Ltd, have been approved for commercialization. In this study, both methods were tested on 14 different carnation cultivars, and identical amplification products were obtained with all of them. No amplification products were observed with samples from 14 other plant species, which demonstrated that the system was specific to carnation. The results of Southern blot analysis confirmed that the ANS gene had a low copy number in the 10 tested carnation varieties. In qualitative and real-time PCR assays, the LOD values of 0.05 and 0.005 ng carnation DNA, respectively, were validated. Moreover, the real-time PCR system was validated with high PCR efficiency and linearity. Thus, the ANS gene had species specificity, low heterogeneity, and low copy number among the tested cultivars. These results provide evidence that the gene can be used as an endogenous reference gene of carnation, as well as in qualitative and quantitative PCR systems.  相似文献   

5.
Methods for detection of GMOs in food and feed   总被引:5,自引:0,他引:5  
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.  相似文献   

6.
Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications.The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.  相似文献   

7.
Roundup Ready soybean powder has been subjected to different amounts of DNA fragmentation to assess the accuracy of real-time PCR on processed food. Certified reference material (CRM) containing 10 g kg−1 of Roundup Ready soybean (ERM-BF410d) prepared by a dry-mixing processing method was exposed to water at two temperatures, using three different mixing devices, or to baking temperature (250°C) for 30 min. The amount of DNA extracted from the different samples was quantified by fluorimetry. The amount of fragmentation of the extracted DNA was characterised by gel and capillary electrophoresis and the percentage of genetically modified (GM) soybean was determined by a double quantitative real-time PCR method. Measurement of the event GTS 40-3-2 (RUR) was possible in all the treated materials, because small amplicons were amplified. Correct RUR percentages could be measured for intact powders with little or no DNA fragmentation. For samples with a high level of DNA degradation, however, the accuracy of the measurement was found to depend on the method used for DNA extraction. Genomic DNA isolated by use of silica resin resulted in statistically significant overestimation of the amount of GM.  相似文献   

8.
The Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA; Paris, France) "Task Force Genetically Modified Tobacco-Detection Methods" investigated the performance of qualitative and quantitative methods based on the polymerase chain reaction (PCR) for the detection and quantitation of genetically modified (GM) tobacco. In the 4 successful rounds of proficiency testing, the cauliflower mosaic virus 35S RNA promoter (CaMV 35S) and the Agrobacterium tumefaciens nopaline synthase terminator (NOS) were selected as target sequences. Blind-coded reference materials containing from 0.1 to 5.0% and from 0.15 to 4% GM tobacco were used in 2 rounds of qualitative and quantitative PCR, respectively. Eighteen laboratories from 10 countries participated in this study. Considering all methods and 2 rounds, the different laboratories were able to detect GM tobacco at the 0.1% level in 46 out of 58 tests in qualitative assays. The results of the proficiency test indicate that both end point screening and real-time quantitative methods are suitable for the detection of genetically modified organisms in tobacco leaf samples having a GM content of 0.1% or higher. The CORESTA proficiency study represents a first step towards the interlaboratory evaluation of accuracy and precision of PCR-based GM tobacco detection, which may lead to the harmonization of analytical procedures and to the enhancement of comparability of testing results produced by different laboratories.  相似文献   

9.
Quantification of genetic modification (GM) is often undertaken to test for compliance with the European Union GM labeling threshold in food. Different control laboratories will often use common validated methods, but with different models of real-time PCR machines. We performed two separate ring trials to evaluate the relative precision and accuracy of different types of real-time PCR machines used to quantify the concentration of GM maize. Both trials used dual-labeled fluorogenic probes for quantification. The first ring trial used separate GM and reference assays (a single fluorescence channel), and the second used a combined duplex assay (two simultaneous fluorescence channels). Five manufacturers and seven models--including a 96-well microtiter-plate, rotary, and portable machines--were examined. In one trial, the machine used had a significant effect on precision, but in the other it did not. Overall, the degree of variation due to the machine model was lower than other factors. No significant repeatable difference in accuracy was observed between machine models. It was not possible to use sufficient replication of machine type in each laboratory to examine all sources of variation in this study, but the results strongly indicate that factors other than machine type or manufacturer (e.g., method or laboratory) contribute more to variation in a GM quantification result.  相似文献   

10.
Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.  相似文献   

11.
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.  相似文献   

12.
New quantitation methods based on a real-time polymerase chain reaction (PCR) technique were developed for 5 lines of genetically modified (GM) maize, including MON810, Event176, Bt11, T25, and GA21, and a GM soy, Roundup Ready. Oligonucleotide DNA, including specific primers and fluorescent dye-labeled probes, were designed for PCRs. Two plasmids were constructed as reference molecules (RMs) for the detection of GM maize and GM soy. The molecules contain the DNA sequences of a specific region found in each GM line, universal sequences used in various GM lines, such as cauliflower mosaic virus 35S promoter and nopaline synthase terminator, and the endogenous DNA sequences of maize or soy. By using these plasmids, no GM maize and GM soy were required as reference materials for the qualitative and quantitative PCR technique. Test samples containing 0, 0.10, 0.50, 1.0, 5.0, and 10% GM maize or GM soy were quantitated. At the 5.0% level, the bias (mean-true value) ranged from 2.8 to 19.4% and the relative standard deviation was <5.2%. These results show that our method involving the use of these plasmids as RMs is reliable and practical for quantitation of GM maize and GM soy.  相似文献   

13.
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.  相似文献   

14.
In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 × 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.  相似文献   

15.
DNA analysis with the polymerase chain reaction (PCR) has become a routine part of medical diagnostics, environmental inspections, food evaluations, and biological studies. Furthermore, the development of a microscale PCR chip is an essential component of studies aimed at integrating PCR into a micro total analysis system (μ-TAS). However, the occurrence of air bubbles in microchannels complicates this process. In this study, we investigated a new technique based on the fluid dynamics of laminar flow that utilizes a small amount of mineral oil at the beginning of sample injection to prevent air bubbles from occurring in microchannels. We also further optimized the pressure, the length of the pressurizing channel and the volume of oil, thus making our microfluidic device more useful for high-temperature PCR. Additionally, quantitative continuous-flow PCR was performed using the optimized PCR chip in order to detect genetically modified (GM) maize. DNA was extracted from GM maize, MON 810, and non-GM maize at several concentrations from 0% (w/v) to 100% (w/v). The DNA amplification signals were then analyzed on the PCR chip using a laser-based system. The signal from our microfluidic PCR chip was found to increase in direct proportion to the initial GM maize concentration.  相似文献   

16.
Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as “acceptance criteria” by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.  相似文献   

17.
Recent years have seen an increased interest in DNA trace detection methods involved in many areas of bioanalytical research, such as quantitation of genetically modified (GM) ingredients in food products. There is little in the way of standardisation of data handling from these methods, and the data generated needs to be analysed appropriately if the results are to be interpreted correctly. This paper describes particular aspects of real-time PCR trace detection methods in order to increase the understanding of data generated using this bioanalytical technique. Using the specific example of GM soya detection and quantitation, it focuses on the production of calibration curves based on the mean and individual data values, the interpretation of correlation coefficients, regression techniques, and discusses suitable data analysis arising from simple and more complex experimental designs following transformation. By using the approaches outlined in this paper, more accurate analysis of data from real-time PCR and GM trace detection methods could be achieved.  相似文献   

18.
Food ingredient adulteration, especially the adulteration of milk and dairy products, is one of the important issues of food safety. The large price difference between camel milk powder, ovine, and bovine milk powder may be an incentive for the incorporation of ovine and bovine derived foods in camel milk products. This study evaluated the use of ordinary PCR and real-time PCR for the detection of camel milk powder adulteration based on the presence of ovine and bovine milk components. DNA was extracted from camel, ovine, and bovine milk powder using a deep-processed product column DNA extraction kit. The quality of the extracted DNA was detected by amplifying the target sequence from the mitochondrial Cytb gene, and the extracted DNA was used for the identification of milk powder based on PCR analysis. In addition, PCR-based methods (both ordinary PCR and real-time PCR) were used to detect laboratory adulteration models of milk powder using primers targeting mitochondrial genes. The results show that the ordinary PCR method had better sensitivity and could qualitatively detect ovine and bovine milk components in the range of 1% to 100% in camel milk powder. The commercial camel milk powder was used to verify the practicability of this method. The real-time PCR normalization system has a good exponential correlation (R2 = 0.9822 and 0.9923) between ovine or bovine content and Ct ratio (specific/internal reference gene) and allows for the quantitative determination of ovine or bovine milk contents in adulterated camel milk powder samples. Accuracy was effectively validated using simulated adulterated samples, with recoveries ranging from 80% to 110% with a coefficient of variation of less than 7%, exhibiting sufficient parameters of trueness. The ordinary PCR qualitative detection and real-time PCR quantitative detection method established in this study proved to be a specific, sensitive, and effective technology, which is expected to be used for market detection.  相似文献   

19.
Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.  相似文献   

20.
Lee JG  Cheong KH  Huh N  Kim S  Choi JW  Ko C 《Lab on a chip》2006,6(7):886-895
Optimal detection of a pathogen present in biological samples depends on the ability to extract DNA molecules rapidly and efficiently. In this paper, we report a novel method for efficient DNA extraction and subsequent real-time detection in a single microchip by combining laser irradiation and magnetic beads. By using a 808 nm laser and carboxyl-terminated magnetic beads, we demonstrate that a single pulse of 40 seconds lysed pathogens including E. coli and Gram-positive bacterial cells as well as the hepatitis B virus mixed with human serum. We further demonstrate that the real-time pathogen detection was performed with pre-mixed PCR reagents in a real-time PCR machine using the same microchip, after laser irradiation in a hand-held device equipped with a small laser diode. These results suggest that the new sample preparation method is well suited to be integrated into lab-on-a-chip application of the pathogen detection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号