首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

2.
The metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1) and [Fe(C16-terpy)2](BF4)2 (2) were synthesized and the physical properties of the complex were characterized by magnetic susceptibility, Mössbauer spectroscopy, polarizing optical microscopy, differential scanning calorimetry, and X-ray scattering, where C16-terpy is 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine. Variable-temperature magnetic susceptibility measurements and/or Mössbauer studies revealed that the complex 1 exhibited unique spin transition (T1/2 = 217 K and T1/2 = 260 K) induced by structural phase transition, and the complex 2 was in the low-spin state in the temperature region of 5–400 K before the first mesophase transition. The cobalt(II) and iron(II) complexes exhibited liquid-crystal properties in the temperature range of 371–528 K and 466–556 K, respectively. After mesophase transition, the complex 1 exhibited only slight spin transition (T1/2 = 266 K and T1/2 = 279 K), and the complex 2 was in the low-spin state. The compounds with multifunction, i.e., magnetic property and liquid-crystal properties, are important in the development of molecular materials.  相似文献   

3.
In this review article we discuss the unique and novel magnetic properties for the cobalt(II) compounds with a variety of terpy derivatives including substituents at the 4-position. These are also compared with the unsubstituted terpy cobalt(II) complex. Since the first SCO cobalt(II) complex with terpy ligand was reported, this system has been widely studied. SCO cobalt(II) complexes possessing terpy or OH-terpy ligand reveal incomplete or gradual SCO behavior. The pyterpy-appended cobalt(II) complex shows SCO depending on the guest molecules involved. Cobalt(II) complexes with long-alkylated terpy ligands, [Co(Cn-terpy)2](BF4)2 (n = 16, 14 and 12) have been synthesized and some were characterized by single crystal X-ray analysis. Furthermore, variable-temperature magnetic susceptibility indicated that the non-solvated compounds [Co(Cn-terpy)2](BF4)2 (n = 16, 14 and 12) exhibit “reverse spin transition” phenomenon with wide thermal hysteresis around room temperature. In addition, the solvated compound [Co(C12-terpy)2](BF4)2·EtOH·0.5H2O shows “re-entrant SCO” behavior. The long alkyl chains in SCO cobalt(II) complexes can lead to novel physical properties resulting from a synergetic effect between SCO and response of the flexibility toward external stimuli.  相似文献   

4.
Two semi-rigid bipyrazolyl ligands, namely 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-dimethyl-1H -pyrazol-4′-yl)methylene]benzene (H2L) and 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-diphenyl-1H -pyrazol-4′-yl)methylene]benzene (H2L′), and their Ag(I) and Cu(II) complexes have been prepared and structurally characterized by means of X-ray analysis. In the structures of the metal complexes, namely [Ag2(H2L)2](BF4)2·2H2O (1), [Ag(H2L)(NO3)]n (2), [Cu2(H2L)4(SO4)2]·11H2O (3), and {[Ag(H2L′)]BF4}n (4), the bipyrazoles act as bridging ligands to connect two metal atoms. Complexes 2 and 4 exhibit 1-D polymeric structures, while 1 and 3 are discrete molecules with a rectangular dimer or tetragonal prismatic shapes, respectively. Two different conformations, namely cis and trans, have been observed for these bipyrazolyl ligands.  相似文献   

5.
 11-(4H-1,2,4-Triazol-4-yl)-undecylmethacrylate (1), a new ligand for Fe(II) spin-crossover (SCO) complexes containing a polymerizable group, was synthesized and characterized. The complex [Fe·1 3](BF4)2 (2) was obtained by reaction of 1 with Fe(BF4)2·6H2O (molar ratio 1/Fe(II) = 3/1) in THF. Complex 2 showed a gradual spin-crossover between 80 and 230 K. The methacrylate units in the ligands of complex 2 could be oligomerized radically in solution (initiator: azoisobutyronitrile) without loss of the spin-crossover behaviour.  相似文献   

6.
Summary.  11-(4H-1,2,4-Triazol-4-yl)-undecylmethacrylate (1), a new ligand for Fe(II) spin-crossover (SCO) complexes containing a polymerizable group, was synthesized and characterized. The complex [Fe·1 3](BF4)2 (2) was obtained by reaction of 1 with Fe(BF4)2·6H2O (molar ratio 1/Fe(II) = 3/1) in THF. Complex 2 showed a gradual spin-crossover between 80 and 230 K. The methacrylate units in the ligands of complex 2 could be oligomerized radically in solution (initiator: azoisobutyronitrile) without loss of the spin-crossover behaviour. Received May 30, 2000. Accepted December 10, 2000  相似文献   

7.
Three novel unsymmetric tridentate ligands, namely, ptmi (ptmi = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-methoxyisatin), pti (pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin), ptni (ptni = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-nitroisatin), and their complexes [Ru(tpy)(ptmi)](ClO4)2 (tpy = 2,2′:6′,2″-terpyridine) (1), [Ru(tpy)(pti)](ClO4)2 (2), and [Ru(tpy)(ptni)](ClO4)2 (3) were prepared and characterized by elemental analysis, 1H NMR, ES–MS. The electrochemical behaviors were studied by cyclic voltammetry. The DNA-binding properties of these complexes were investigated by the spectroscopic method, viscosity measurements, and thermal denaturation. Theoretical studies on these complexes were also performed with the density functional theory (DFT) method. The experimental results showed that these complexes bind to calf thymus (CT-DNA) in an intercalative mode. The order of DNA-binding affinities (A) of these complexes is A(1) < A(2) < A(3). The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the DFT calculations.  相似文献   

8.
The reaction of [PtMe3(bpy)(Me2CO)](BF4) (2) (prepared from [PtMe3I(bpy)] (1) plus Ag(BF4)) with MeSSMe resulted in the formation of [PtMe3(bpy)(MeSSMe-κS)](BF4) (3). A single-crystal X-ray diffraction analysis revealed in the octahedral Pt(IV) complex (configuration index: OC-6-33), a conformation of the monodentately κS bound MeSSMe ligand (C–S–S–C 92.7(4)°) being very close to that in non-coordinated MeSSMe, thus allowing some hyperconjugative interaction stabilizing the S–S bond. The reaction of [K(18C6)][(PtMe3)2(μ-I)(μ-pz)2] (4; 18C6 = 18-crown-6, Hpz = pyrazole) with Ag(BF4) and MeSSMe resulted in the formation of dinuclear complexes [(PtMe3)2(μ-pz)2(μ-MeSSMe)] existing at room temperature in acetone solution as different fast interconverting isomers. At –40 °C, two isomers with a μ-1κS:2κS (5a) and a μ-1κS:2κS′ (5b) coordinated MeSSMe ligand in the ratio 2:1 could be identified 1H NMR spectroscopically. DFT calculations of type 5 complexes revealed the existence of two conformers with a μ-MeSSMe-1κS:2κS ligand, which differ mainly in the C–S–S–C dihedral angle (66.4 vs. 180.0° 6a/6a′). They have essentially the same energy and a very low activation barrier in acetone as solvent (1.3 kcal/mol) for their mutual interconversion. A further equilibrium structure was identified to be an isomer having a μ-MeSSMe-1κS:2κS′ ligand (6b) that proved to be only 1.9 kcal/mol higher in energy than 6a/6a′.  相似文献   

9.
We report the reactivity of three binuclear non-heme Fe(III) compounds, namely [Fe2(bbppnol)(μ-AcO)(H2O)2](ClO4)2 (1), [Fe2(bbppnol)(μ-AcO)2](PF6) (2), and [Fe2(bbppnol)(μ-OH)(Cl)2]·6H2O (3), where H3bbppnol = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)–1,3-propanediamine-2-ol, toward the hydrolysis of bis-(2,4-dinitrophenyl)phosphate as models for phosphoesterase activity. The synthesis and characterization of the new complexes 1 and 3 was also described. The reactivity differences observed for these complexes show that the accessibility of the substrate to the reaction site is one of the key steps that determinate the hydrolysis efficiency.  相似文献   

10.
A mononuclear complex [CuL] (1), a binuclear complex [Cu2LCl2(H2O)] (2), a trinuclear complex [Cu3L2](ClO4)2 (3) involving o-phenylenediamine and salicylaldehyde and another binuclear complex of a tridentate ligand (H2L1) [Cu2L21](CH3COO)2 (4) involving o-phenylenediamine and diacetylmonoxime have been synthesized, where H2L = N,N′-o-phenylenebis(salicylideneimine) and H2L1 = 3-(2-aminophenylimino)butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral and magnetic studies. The binuclear complex (2) was characterized structurally where the two Cu(II) centers are connected via an oxygen-bridged arrangement.  相似文献   

11.
Three new polyamine Ni(II) complexes, namely [Ni(trien)(phen)](BF4)2 1, [Ni(trien)(bipy)](ClO4)2 2 and [Ni(trien)(en)](ClO4)2 3 [trine = triethylenetetramine, phen = 1,10-phenanthroline, bipy = 2,2′-bipyridyl, en = ethylenediamine] have been synthesized and characterized by physico-chemical and spectroscopic methods. Complexes 1 and 2 crystallize in monoclinic space group P21/c, and possess a distorted octahedral geometry. Significant hydrogen bonding interactions are found in both complexes.  相似文献   

12.
Reaction of the dinuclear complex [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl]2 (1) with ligands (L = 4-picoline, sym-collidine) gave the six-membered palladacycles [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (2). The complex 1 reacted with AgX (X = CF3SO3, BF4) and bidentate ligands [L–L = phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), bipy(2,2′-bipyridine) and dppp (bis(diphenylphosphino)propane)] giving the mononuclear orthopalladated complexes [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(L–L)] (3) [L–L = phen, dppe, bipy and dppp]. These compounds were characterized by physico-chemical methods, and the structure of [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (L = sym-collidine) was determined by single-crystal X-ray analysis.  相似文献   

13.

Abstract  

Based on the polydentate ligand 3,5-bis(3-pyridyl)-1H-1,2,4-triazole (3,3′-Hbpt), three coordination compounds [Zn(3,3′-Hbpt)(ip)]·2H2O (1), [Zn(3,3′-Hbpt)(5-NO2-ip)]·H2O (2), and [Zn(3,3′-Hbpt)2(H2pm)(H2O)2]·2H2O (3) have been hydrothermally constructed with H2ip, 5-NO2-H2ip and H4pm as auxiliary ligands (H2ip = isophthalic acid, 5-NO2-H2ip = 5-NO2-isophthalic acid, H4pm = pyromellitic acid). Structural analysis reveals that Zn(II) ions serve as four-coordinated, five-coordinated, and six-coordinated connectors in 13, respectively, while 3,3′-Hbpt adopts μ-Npy and Npy coordination modes in two typical conformations in these target coordination compounds. Dependently the applied ligand, compounds 13 exhibit either 1D channel, cage or chain structures, respectively. In addition, the luminescence properties of 13 have been investigated in the solid state at room temperature.  相似文献   

14.
1H and 13C NMR chemical shifts have been determined and assigned based on PFG 1H, 13C HMQC, and HMBC experiments for 3-(4′-X-benzyl)-4-chromenones (Ia, X = CN and Ib, X = NO2), 3-(4′-X-benzyl)-4-thiochromenones (IIa, X = Cl and IIb, X = Br), (E)-3-(4′-X-benzylidene)-4-chromanones (IIIaIIIe, X = OCH3, CH3, Cl, N(CH3)2, Br), (Z)-3-(4′-X-benzylidene)4-thiochromanones (IVaIVd, X = Cl, Br, F, OCH3), 2-benzyl-1,2,3,4-tetrahydro-1-naphthol (V), 2-benzyl- and (E)-2-benzylidene-1-tetralones (VI and VII), and (E)-2-benzylidene-1-benzosuberol (VIII). The crystal structures have been determined for the following seven compounds: derivatives of 4-chromanones (IIIaIIId), 1-tetrahydronaphtol (V), and 1-tetralones (VI and VII). The molecular features and intermolecular interactions in crystal state have been discussed.  相似文献   

15.

Abstract  

Three copper(II), one zinc(II), and one ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different metal/ligand molar ratios, formulated as [Cu(3-bromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (1), [Cu(3,8-dibromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (2), [Cu(3,8-dibromo-phen)(ClO4)(H2O)3](ClO4)(H2O)3 (3), [Zn(3,8-dibromo-phen)2(H2O)2](ClO4)2(H2O)2 (4), and [Fe(3,8-dibromo-phen)3](ClO4)2(H2O)(CH4O)(C3H6O)2 (5) (phen = 1,10-phenanthroline), have been synthesized and characterized in this paper. X-ray single-crystal diffraction studies reveal the different crystallographic symmetry and packing fashions between neighboring phen rings in 1:1 Cu(II) complexes 13 due to the alteration of bromo substituent 1,10-phenanthroline ligands and coordinated or free solvent molecules. Additionally, in 1:2 Zn(II) and 1:3 Fe(II) complexes 4 and 5, continuous π–π stacking and alternating π–π and dimeric p–π stacking are found.  相似文献   

16.
The mononuclear complexes (η3-terpy)M(Piv)2·MeCN (M = Fe ii (3) and Co ii (4), and Piv is the pivalate anion) were synthesized by the reactions of polymeric iron(ii) and cobalt(ii) pivalates with 2,2′:6′,2″-terpyridine (terpy). The oxidation of compound 3 affords the pentanuclear heterospin iron(ii,iii) complex (η3-terpy)Fe54-O)(μ3-OH)(μ-OH)2(μ-Piv)71-Piv)2 (5). All compounds were characterized by X-ray diffraction. Dedicated to the 90th anniversary of the L. Ya. Karpov Institute of Physical Chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1186–1190, June, 2008.  相似文献   

17.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

18.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

19.
Phase transition and thermal decomposition of [Cd(H2O)6](BF4)2 were studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermogravimetry (TG) methods. The solid-solid phase transition at T C1=324 K and the melting point atT melt.=391 K were registered. The thermal dehydration process starts just above T C1 and continues up to T melt.,where [Cd(H2O)4](BF4)2 in the liquid phase is formed. Then, dehydration and decomposition take place simultaneously until CdF2 is obtained. Final products of the thermal decomposition were identified using quadrupole mass spectrometry (QMS) and X-ray diffraction methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Summary.  In the present review, we reexamine the photomagnetic properties of the [Fe(PM-BiA)2(NCS)2], cis-bis(thiocyanato)-bis[(N-2′-pyridylmethylene)-4-(aminobiphenyl)]iron(II), compound which exhibits, depending on the synthetic method, an exceptionally abrupt spin transition (phase I) with a very narrow hysteresis (T 1/2↓ = 168 K and T 1/2↑ = 173 K) or a gradual spin conversion (phase II) occurring at 190 K. In both cases, light irradiation in the tail of the 1MLCT-LS absorption band, at 830 nm, results in the population of the high-spin state according to the light-induced excited spin-state trapping (LIESST) effect. The capacity of a compound to retain the light-induced HS information, estimated through the T(LIESST) experiment, is determined for both phases. Interestingly, the shape of the T(LIESST) curve is more gradual for the phase II than for the phase I and the T(LIESST) value is found considerably lower in the case of the phase II. The kinetics parameters involved in the photoinduced high-spin→low-spin relaxation process are estimated for both phases. From these data, the experimental T(LIESST) curves are simulated and the particular influence of the cooperativity as well as of the parameters involved in the thermally activated and tunneling regions are discussed. The Light-Induced Thermal Hysteresis (LITH), originally described for the strongly cooperative phase I, is also reinvestigated. The quasi-static LITH loop is determined by recording the photostationary points in the warming and cooling branches. Corresponding authors. E-mail: letard@icmcb.u-bordeaux.fr Received August 26, 2002; accepted August 30, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号