首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Sensory input is crucial to the initiation and modulation of swallowing. From a clinical point of view, oropharyngeal sensory deficits have been shown to be an important cause of dysphagia and aspiration in stroke patients. In the present study we therefore investigated effects of functional oropharyngeal disruption on the cortical control of swallowing. We employed whole-head MEG to study cortical activity during self-paced volitional swallowing with and without topical oropharyngeal anesthesia in ten healthy subjects. A simple swallowing screening-test confirmed that anesthesia caused swallowing difficulties with decreased swallowing speed and reduced volume per swallow in all subjects investigated. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of the individual SAM data was performed using a permutation test.  相似文献   

2.

Background  

Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of individual SAM data was performed using a permutation test.  相似文献   

3.

Background  

To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.  相似文献   

4.

Background  

Processing of multimodal information is a critical capacity of the human brain, with classic studies showing bimodal stimulation either facilitating or interfering in perceptual processing. Comparing activity to congruent and incongruent bimodal stimuli can reveal sensory dominance in particular cognitive tasks.  相似文献   

5.

Background  

Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs) elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold.  相似文献   

6.

Background  

Previous literature has shown that the frontal N30 is increased during movement of the hand contralateral to median nerve stimulation. This finding was a result of non-dominant left hand movement in right-handed participants. It is unclear however if the effect depends upon non-dominant hand movement or if this is a generalized phenomenon across the upper-limbs. This study tests the effect of dominant and non-dominant hand movement upon contralateral frontal and parietal somatosensory evoked potentials (SEPs) and further tests if this relationship persists in left hand dominant participants. Median nerve SEPs were elicited from the wrist contralateral to movement in both right hand and left hand dominant participants alternating the movement hand in separate blocks. Participants were required to volitionally squeeze (~ 20% of a maximal voluntary contraction) a pressure-sensitive bulb every ~3 seconds with the hand contralateral to median nerve stimulation. SEPs were continuously collected during the task and individual traces were grouped into time bins relative to movement according to the timing of components of the Bereitschaftspotential. SEPs were then averaged and quantified from both FCZ and CP3/4 scalp electrode sites during both the squeeze task and at rest.  相似文献   

7.

Background  

The primary sensory cortex (S1) in the postcentral gyrus is comprised of four areas that each contain a body map, where the representation of the hand is located with the thumb most laterally, anteriorly and inferiorly and the little finger most medially, posteriorly and superiorly. Previous studies on somatotopy using functional MRI have either used low field strength, have included a small number of subjects or failed to attribute activations to any area within S1. In the present study we included twenty subjects, who were investigated at 3 Tesla (T). We focused specifically on Brodmann area 3b, which neurons have discrete receptive fields with a potentially more clearcut somatotopic organisation. The spatial distribution for all fingers' peak activation was determined and group as well as individual analysis was performed.  相似文献   

8.

Background  

The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.  相似文献   

9.

Background  

Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR), a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity.  相似文献   

10.

Background  

Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.  相似文献   

11.

Background  

Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA)). Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI). Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand.  相似文献   

12.

Background  

Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.  相似文献   

13.

Background  

The capsaicin (vanilloid) receptor, VR1, is an agonist-activated ion channel expressed by sensory neurons that serves as a detector of chemical and thermal noxious stimuli.  相似文献   

14.

Background  

The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC), which is composed of the nucleus of the solitary tract (NTS), the area postrema and the dorsal motor nucleus of the vagus nerve (DMX), via the vagus and glossopharyngeal nerves and then the solitary tract (TS) in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown.  相似文献   

15.

Background  

Little is known about the roles of dendritic gap junctions (GJs) of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms.  相似文献   

16.

Background  

Previous studies showed that anodal transcranial DC stimulation (tDCS) applied to the primary motor cortex of the affected hemisphere (M1affected hemisphere) after subcortical stroke transiently improves performance of complex tasks that mimic activities of daily living (ADL). It is not known if relatively simpler motor tasks are similarly affected. Here we tested the effects of tDCS on pinch force (PF) and simple reaction time (RT) tasks in patients with chronic stroke in a double-blind cross-over Sham-controlled experimental design.  相似文献   

17.

Background  

Cognitive impairment is a common feature in multiple sclerosis (MS) patients and occurs in 60% of all cases. Unfortunately, neurological examination does not always agree with the neuropsychological evaluation in determining the cognitive profile of the patient. On the other hand, psychophysiological techniques such as event-related potentials (ERPs) can help in evaluating cognitive impairment in different pathologies.  相似文献   

18.

Background  

Nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) all play important roles in the development of the peripheral sensory nervous system. Additionally, these growth factors are proposed to modulate the properties of the sensory system in the adult under pathological conditions brought about by nerve injury or inflammation. We have examined the effects of NGF, GDNF and BDNF on adult rat trigeminal ganglion (TG) neurons in culture to gain a better understanding of how these growth factors alter the cytochemical and functional phenotype of these neurons, with special attention to properties associated with nociception.  相似文献   

19.

Background  

Transcranial direct current stimulation (tDCS) is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres.  相似文献   

20.

Background  

Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号