首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A problem of pulsed control for a three-dimensional magnetohydrodynamic (MHD) model is considered. It is demonstrated that singularities of the solution of MHD equations do not develop with time because they are suppressed by a magnetic field. The existence of an optimal control is proved. An optimality system with the solution regular in time as a whole is constructed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 3–10, September–October, 2008.  相似文献   

2.
Results of experimental and numerical investigations of the effect of gas injection through a permeable porous surface on the drag coefficient of a cone-cylinder body of revolution in a supersonic flow with the Mach number range M h = 3–6 are presented. It is demonstrated that gas injection through a porous nose cone with gas flow rates being 6–8% of the free-stream flow rate in the mid-section leads to a decrease in the drag coefficient approximately by 5–7%. The contributions of the decrease in the drag force acting on the model forebody and of the increase in the base pressure to the total drag reduction are approximately identical. Gas injection through a porous base surface with the flow rate approximately equal to 1% leads to a threefold increase in the base pressure and to a decrease in the drag coefficient. Gas injection through a porous base surface with the flow rate approximately equal to 5% gives rise to a supersonic flow zone in the base region.  相似文献   

3.
Free convection heat transfer along an isothermal vertical wavy surface was studied experimentally and numerically. A Mach-Zehnder Interferometer was used in the experiment to determine the local heat transfer coefficients. Experiments were done for three different amplitude–wavelength ratios of α = 0.05, 0.1, 0.2 and the Rayleigh numbers ranging from Ra l = 2.9 × 105 to 5.8 × 105. A finite-volume based code was developed to verify the experimental study and obtain the results for all the amplitude–wavelength ratios between α = 0 to 0.2. It is found that the numerical results agree well with the experimental data. Results indicate that the frequency of the local heat transfer rate is the same as that of the wavy surface. The average heat transfer coefficient decreases as the amplitude–wavelength ratio increases and there is a significant difference between the average heat transfer coefficients of the surface with α = 0.2 and those surfaces with α = 0.05 and 0.1. The experimental data are correlated with a single equation which gives the local Nusselt number along the wavy surface as a function of the amplitude–wavelength ratio and the Rayleigh number.  相似文献   

4.
A new approach for feedback linearization of attitude dynamics for rigid gas jet-actuated spacecraft control is introduced. The approach is aimed at providing global feedback linearization of the spacecraft dynamics while realizing a prescribed linear attitude deviation dynamics. The methodology is based on nonuniqueness representation of underdetermined linear algebraic equations solution via nullspace parametrization using generalized inversion. The procedure is to prespecify a stable second-order linear time-invariant differential equation in a norm measure of the spacecraft attitude variables deviations from their desired values. The evaluation of this equation along the trajectories defined by the spacecraft equations of motion yields a linear relation in the control variables. These control variables can be solved by utilizing the Moore–Penrose generalized inverse of the involved controls coefficient row vector. The resulting control law consists of auxiliary and particular parts, residing in the nullspace of the controls coefficient and the range space of its generalized inverse, respectively. The free null-control vector in the auxiliary part is projected onto the controls coefficient nullspace by a nullprojection matrix, and is designed to yield exponentially stable spacecraft internal dynamics, and singularly perturbed feedback linearization of the spacecraft attitude dynamics. The feedback control design utilizes the concept of damped generalized inverse to limit the growth of the Moore–Penrose generalized inverse, in addition to the concepts of singularly perturbed controls coefficient nullprojection and damped controls coefficient nullprojection to disencumber the nullprojection matrix from its rank deficiency, and to enhance the closed loop control system performance. The methodology yields desired linear attitude deviation dynamics realization with globally uniformly ultimately bounded trajectory tracking errors, and reveals a tradeoff between trajectory tracking accuracy and damped generalized inverse stability. The paper bridges a gap between the nonlinear control problem applied to spacecraft dynamics and some of the basic generalized inversion-related analytical dynamics principles.  相似文献   

5.
A turbulent flow past two symmetric airfoils, whose bow and aft portions are circular arcs, whereas midparts are flat, is studies numerically. The amplitude of lift coefficient oscillations versus the free-stream Mach number M is analyzed at zero angle of attack. Ranges of M in which there exist flow bifurcations are determined. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 37–44, November–December, 2008  相似文献   

6.
Water vapor diffusion through the soil is an important part in the total water flux in the unsaturated zone of arid or semiarid regions and has several significant agricultural and engineering applications because soil moisture contents near the surface are relatively low. Water vapor diffusing through dry soil is absorbed for both long and short terms. Long-term absorption allows more water to enter than exit the soil, as reflected in the concentration gradient. Short-term absorption leads to an apparent reduction in the diffusion rate, as reflected in the diffusion coefficient. This investigation studied the effects of soil temperature and porosity on the isothermal diffusion of water vapor through soil. The diffusion model consisted of 25.4 cm × 8.9 cm × 20.3 cm Plexiglas box divided into two compartments by a partition holding a soil reservoir. Water vapor moved from a container suspended by a spring in one compartment, through the porous medium in the center of the model, to calcium chloride in a container suspended by a spring in the other compartment. The porous materials consisted of aggregates of varying size (2–2.8, 1–2, and 0.5–1 mm) of a Fayatte silty clay loam (a fine-silty, mixed mesic Typic Hapludalf). The flow rates of water vapor were measured at temperatures of 10, 20, 30, and 40°C. Warmer temperatures increased the rate of diffusion through dry soil while reduced the amount of water absorbed by that soil. Reducing porosity slowed the rate of diffusion and increased the amount of water absorbed. The dry soil in this study absorbed from 1/8 to 2/3 of the diffusing water. Maximum absorption rates occurred with the most compact soil samples at the highest temperature, though the maximum absorption as a percentage of the diffusing water was in the compact samples at the lowest temperature. The diffusivity equation D/D 0 = [(S – 0.1)/0.9]2 fit the D/D 0 values obtained from these data if a coefficient of 1/3 or 1/3.5 is added to correct for the time delays caused by temporary sorption of the diffusing water vapor. The data, influenced by the interaction of water vapor and soil materials, represent a diffusion rate lower than the diffusion rate that would have resulted without this interaction. Mention of trade names, proprietary products, or specific equipment is intended for reader information only and does not constitute a guarantee or warranty by the USDA-ARS nor does it imply approval of the product named to the exclusion of other products. An erratum to this article can be found at  相似文献   

7.
In this work, we show that for linear upper triangular systems of differential equations, we can use the diagonal entries to obtain the Sacker and Sell, or Exponential Dichotomy, and also –under some restrictions– the Lyapunov spectral intervals. Since any bounded and continuous coefficient matrix function can be smoothly transformed to an upper triangular matrix function, our results imply that these spectral intervals may be found from scalar homogeneous problems. In line with our previous work [Dieci and Van Vleck (2003), SIAM J. Numer. Anal. 40, 516–542], we emphasize the role of integral separation. Relationships between different spectra are shown, and examples are used to illustrate the results and define types of coefficient matrix functions that lead to continuous Sacker–Sell spectrum and/or continuous Lyapunov spectrum.   相似文献   

8.
It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2–He, CO2–Ne, CO2–Ar, CO2–Kr, and CO2–Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic–Wakeham method.  相似文献   

9.
This work investigates the adaptive QS synchronization of non-identical chaotic systems with unknown parameters. The sufficient conditions for achieving QS synchronization of two different chaotic systems (including different dimensional systems) are derived, based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the non-identical chaotic systems are to have QS synchronization. Finally, four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
In the last 30 years, some authors have been studying several classes of boundary value problems (BVP) for partial differential equations (PDE) using the method of reduction to obtain a difference equation with continuous argument which behavior is determined by the iteration of a one-dimensional (1D) map (see, for example, Romanenko, E. Yu. and Sharkovsky, A. N., International Journal of Bifurcation and Chaos 9(7), 1999, 1285–1306; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 5(5), 1995, 1419–1425; Sharkovsky, A. N., Analysis Mathematica Sil 13, 1999, 243–255; Sharkovsky, A. N., in “New Progress in Difference Equations”, Proceedings of the ICDEA'2001, Taylor and Francis, 2003, pp. 3–22; Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Sharkovsky, A. N., Maistrenko, Yu. L., and Romanenko, E. Yu., Difference Equations and Their Applications, Kluwer, Dordrecht, 1993.). In this paper we consider the time-delayed Chua's circuit introduced in (Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668.) which behavior is determined by properties of one-dimensional map, see Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Maistrenko, Yu. L., Maistrenko, V. L., Vikul, S. I., and Chua, L. O., International Journal of Bifurcation and Chaos 5(3), 1995, 653–671; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668. To characterize the time-evolution of these circuits we can compute the topological entropy and to distinguish systems with equal topological entropy we introduce a second topological invariant.  相似文献   

11.
Although the formulation of the nonlinear theory of H  control has been well developed, solving the Hamilton–Jacobi–Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H  control via output feedback are presented. An example is presented illustrating the application of the algorithm.  相似文献   

12.
Forced convection heat transfer characteristics around a microsphere subjected to uniform heat flux boundary condition is numerically investigated in this study. Moderate to high values of Reynolds number and a wide range of Prandtl number are considered. The analysis assumes that the continuity assumption is valid and hence the Navier–Stokes equations are solved for the range of Knudsen number of 0.001 ≤ Kn ≤ 0.1. The appropriate boundary conditions at the surface of the microsphere; the velocity slip and temperature jump are applied. The effect of the flow parameters: Re, Pr and Kn on the velocity and temperature distribution is presented and hence a better control on the boundary layer thickness can be achieved in the microscale level. Furthermore, the effect of the controlling parameters on the delay of flow separation, reduced shear stress, drag coefficient and on the Nusselt number profiles is also presented in the results.  相似文献   

13.
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity (U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10−5 and 5.981 × 10−5 m2/h for slab products, 0.818 × 10−5 and 6.287 × 10−5 m2/h for cylindrical products and 1.213 × 10−7 and 7.589 × 10−7 m2/h spherical products using the Model-I and 0.316 × 10−5–5.072 × 10−5 m2/h for slab products, 0.580 × 10−5–9.587 × 10−5 m2/h for cylindrical products and 1.408 × 10−7–13.913 × 10−7 m2/h spherical products using the Model-II.  相似文献   

14.
Results obtained by accurate analytical methods applied to the problem of molecular-gas slip over a rigid spherical surface are reported. The Boltzmann equation is modified to take into account rotational degrees of freedom in the BGK model is used as a master kinetic equation. The calculated slip coefficients are shown to depend on the Prandtl number and on the gas temperature. Slip coefficients for several molecular gases are plotted as functions of temperature. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 58–65, January–February, 2006.  相似文献   

15.
Normal stresses play a key role in polymer processing, yet accurate measurements are still challenging. Simultaneous rheo-optical measurements are conducted on a poly(vinyl methyl ether) homopolymer melt over a wide range of temperatures and oscillatory shear frequencies, in an effort to measure the normal stresses, by using quantitative flow birefringence measurements. The stress optical rule holds well for this polymer as expected, with the value of the stress optic coefficient of (6.38±0.19)×10−11 cm2/dyn at 30°C. The first and third normal stress difference coefficients, calculated using a single memory constitutive equation applied to the stress and birefringence data, are in excellent agreement. The ratio of the measured third and first normal stress difference coefficients, (1−β)=0.71±0.05, agrees well with the result of the Doi–Edwards model with independent alignment approximation (β=0.28). The measurement of normal stress difference coefficients with such small deviations proves the robust nature of the improved rheo-optical instrument and its ability to measure complete stress tensor.  相似文献   

16.
Understanding turbulence kinetic energy (TKE) budget in gas–liquid two-phase bubbly flows is indispensable to develop and improve turbulence models for the bubbly flows. In this study, a molecular tagging velocimetry based on photobleaching reaction was applied to turbulent bubbly flows with sub-millimeter bubbles in a vertical square duct to examine the applicability of the k–ε models to the bubbly flows. Effects of bubbles on TKE budget are discussed and a priori tests of the standard and low Reynolds number k–ε models are carried out to examine the applicability of these models to the bubbly flows. The conclusions obtained are as follows: (1) The photobleaching molecular tagging velocimetry is of use for validating turbulence models. (2) The bubbles increase the liquid velocity gradient in the near wall region, and therefore, enhance the production and dissipation rates of TKE. (3) The k–ε models can reasonably evaluate the production rate of TKE in the bubbly flows. (4) The modulations of diffusion due to the bubbles have different characteristics from the diffusion enhancement due to shear-induced turbulence. Hence, the k–ε models fail in evaluating the diffusion rate in the near wall region in the bubbly flows. (5) The k–ε models represent the trends of the production, dissipation, and diffusion rates of ε in the bubbly flow, although more accurate experimental data are required for quantitative validation of the ε equation.  相似文献   

17.
A new method is proposed for creating “smart” surfaces for suppressing turbulence and retaining a laminar supersonic flow. Methods of formation of super-fast-response sensors and actuators for such surfaces are developed. Such sensors and actuators are structurally designed as microtubes made of SiO 2 /Si 3 N 4 /Au and InGaAs/GaAs/Au heterofilms and suspended above a substrate; the wall thickness of these tubes is in the nanometer range; the tubes are connected to electrical contacts. Models of distributed arrays of tubular microsensors and microactuators are fabricated in a single technological process, which involves the well-established planar technology and the technology of rolling of stressed heterofilms. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 145–151, March–April, 2009.  相似文献   

18.
Coefficients of heat transfer to the surface in a laminar hypersonic flow (M = 21) over plane and axisymmetric models with a compression corner are presented. These coefficients are measured by an infrared camera. The parameters varied in the experiments are the angle of the compression corner and the distance to the corner point. Characteristics of the flow with and without separation in the corner configuration are obtained. The measured results are compared with direct numerical simulations performed by solving the full unsteady Navier-Stokes equations. Experiments with controlled streamwise structures inserted into the flow are described. A substantial increase in the maximum values of the heat-transfer coefficient in the region of flow reattachment after developed laminar separation is demonstrated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 112–120, July–August, 2009.  相似文献   

19.
In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilization problems of fluid flows described by the Prandtl equations [5]. To study the infinitesimal generator associated with the adjoint linearized Crocco equation – with homogeneous boundary conditions – we first study degenerate parabolic equations in which the x-variable plays the role of a time variable. This equation is doubly degenerate: the coefficient in front of ∂x vanishes on a part of the boundary, and the coefficient of the elliptic operator vanishes in another part of the boundary. This makes very delicate the proof of uniqueness of solution. To overcome this difficulty, a uniqueness result is first obtained for an equation in which the elliptic operator is symmetric, and it is next extended to the original equation by combining an iterative process and a fixed point argument (see Th. 4.9). This kind of argument is also used to prove estimates, which cannot be obtained in a classical way.  相似文献   

20.
The Lighthill acoustic analogy combined with Reynolds-averaged Navier–Stokes flow computations are used to investigate the ability of existing technology to predict the tonal noise generated by vortex shedding from a circular cylinder for a range of Reynolds numbers (100 < Re < 5 million). Computed mean drag, mean coefficient of pressure, Strouhal number, and fluctuating lift are compared with experiment. Two-dimensional calculations produce a Reynolds number trend similar to experiment but incorrectly predict many of the flow quantities. Different turbulence models give inconsistent results in the critical Reynolds number range (Re≈ 100000). The computed flow field is used as input for noise prediction. Two-dimensional inputs overpredict both noise amplitude and frequency; however, if an appropriate correlation length is used, predicted noise amplitudes agree with experiment. Noise levels and frequency content agree much better with experiment when three-dimensional flow computations are used as input data. Received 5 May 1998 and accepted 28 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号