首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vibration analysis of single-layered graphene sheets (SLGSs) is investigated using nonlocal continuum plate model. To this end, Eringens's nonlocal elasticity equations are incorporated into the classical Mindlin plate theory for vibrations of rectangular nanoplates. In contrast to the classical model, the nonlocal model developed in this study has the capability to evaluate the natural frequencies of the graphene sheets with considering the size-effects on the vibrational characteristics of them. Solutions for frequencies of the free vibration of simply-supported and clamped SLGSs are computed using generalized differential quadrature (GDQ) method. Then, molecular dynamics (MD) simulations for the free vibration of various SLGSs with different values of side length and chirality are employed, the results of which are matched with the nonlocal model ones to derive the appropriate values of the nonlocal parameter relevant to each boundary condition. It is found that the value of the nonlocal parameter is independent of the magnitude of the geometrical variables of the system.  相似文献   

2.
In the present paper, the sinusoidal shear deformation plate theory (SDPT) is reformulated using the nonlocal differential constitutive relations of Eringen to analyze the bending and vibration of the nanoplates, such as single-layered graphene sheets, resting on two-parameter elastic foundations. The present SDPT is compared with other plate theories. The nanoplates are assumed to be subjected to mechanical and thermal loads. The equations of motion of the nonlocal model are derived including the plate foundation interaction and thermal effects. The governing equations are solved analytically for various boundary conditions. Nonlocal theory is employed to bring out the effect of the nonlocal parameter on the bending and natural frequencies of the nanoplates. The influences of nonlocal parameter, side-to-thickness ratio and elastic foundation moduli on the displacements and vibration frequencies are investigated.  相似文献   

3.
In this paper, the effects of two main types of structural defects, i.e. Stone–Wales and single vacancy, on the mechanical properties of single-layered graphene sheets (SLGSs) are investigated. To this end, molecular dynamics simulations based on the Tersoff–Brenner potential function and Nose–Hoover thermostat technique are implemented. The results obtained have revealed that the presence of defects significantly reduces the failure strain and the intrinsic strength of SLGSs, while it has a slight effect on Young’s modulus. Furthermore, the examination of loading in both armchair and zigzag directions demonstrated that SLGSs are slightly stronger in the armchair direction and defects have lower effect in this direction. Considering the fracture mechanism, the failure process of defective and perfect graphene sheets is also presented.  相似文献   

4.
陆昕  周雄  钱帅伟  潘笑 《应用声学》2020,39(4):638-646
随着电力需求的逐年增长,干式变压器的数量也在不断增加。干式变压器在运行时存在着振动和噪声的问题,为了对干式变压器振动的规律与特点进行研究,本文建立了干式变压器本体振动的有限元仿真模型,通过电磁分析获得相应的磁场分布,然后利用结构动力学分析得到其本体振动的相关规律。通过对处于运行状态的变压器振动数据进行实测分析,得到变压器振动的特征频率,然后对仿真结果进行对比分析,可以发现振动幅度与频率之间存在的关系。本文的研究结果可对干式变压器的减振降噪研究提供参考。  相似文献   

5.
Stress concentration factor concept has been developed for single-layered graphene sheets (SLGSs) with circular holes through an atomistic point of view by the application of molecular structural mechanics (MSM) approach. In this approach the response of SLGSs against unidirectional tensile loading is matched to the response of a frame-like macro structure containing beam elements by making an equivalence between strain energies of beam elements in MSM and potential energies of chemical bonds of SLGSs. Both chirality and size effects are considered and the atomistic evaluation of stress concentration factor is performed for different sizes of circular holes. Also, molecular dynamics simulations are implemented to verify the existence and location of the predicted stress concentration. The results reveal that size effects and the diameters of circular holes have a significant influence on the stress concentration factor of SLGSs and armchair SLGSs show a larger value of stress concentration than zigzag ones.  相似文献   

6.
The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.  相似文献   

7.
In the present study, a generalized nonlocal beam theory is proposed to study bending, buckling and free vibration of nanobeams. Nonlocal constitutive equations of Eringen are used in the formulations. After deriving governing equations, different beam theories including those of Euler–Bernoulli, Timoshenko, Reddy, Levinson and Aydogdu [Compos. Struct., 89 (2009) 94] are used as a special case in the present compact formulation without repeating derivation of governing equations each time. Effect of nonlocality and length of beams are investigated in detail for each considered problem. Present solutions can be used for the static and dynamic analyses of single-walled carbon nanotubes.  相似文献   

8.
张保磊  王家序  肖科  李俊阳 《物理学报》2014,63(15):154601-154601
纳米尺度探针是研究纳米薄膜材料的重要工具.针对纳米探针和石墨烯相互作用有限元模型静态计算中难以收敛的困难,应用动态显式算法通过间歇式探针进给方式进行能量耗散,得出静态计算结果.模型中界面作用力由界面黏结能和原子间作用势导出并植入Abaqus软件中界面作用子程序,实现对石墨烯、探针,基体系统内相互作用的仿真计算.通过对比计算结果和实验数据,对实验结果给出了一致性解释.  相似文献   

9.
Free vibration of cantilever multi-layer graphene nanoribbons (MLGNRs) with interlayer shear effect is investigated using molecular dynamics simulations (MD) and nonlocal elasticity. Because of similarity of MLGNRs to sandwich structures, sandwich formulations are expressed in the nonlocal form. By comparing the first two frequencies of MLGNRs with various layers and lengths obtained using MD simulations with those of the nonlocal sandwich formulation; the nonlocal parameter is calibrated to match the results of two methods. The results reveal that the calibrated nonlocal parameter for predicting the second frequencies is dependent on the number of MLGNR layers, and it increases by increasing the number of layers.  相似文献   

10.
The free vibration and axial buckling of achiral zinc oxide nanotubes (ZnONTs) are studied in this paper based on a three-dimensional finite-element model in which bonds are modeled using beam elements and mass elements are placed at the joints of beams instead of atoms. To determine the mechanical properties of the nanotubes, a linkage is established between molecular mechanics and density functional theory. The fundamental frequency and critical buckling load of ZnONTs with different geometries, chiralities and boundary conditions are calculated. It is shown that zigzag nanotubes are more stable than armchair ones. Investigating the effect of aspect ratio on the critical force shows that longer nanotubes are less stable. Also, it is indicated that increasing the length of the nanotubes will result in decreasing the frequency. Moreover, as the aspect ratio increases, the effect of end conditions diminishes.  相似文献   

11.
Carbon nanostructures such as carbon nanotubes (CNTs) and graphene sheets have attracted great attention due to their exceptionally high strength and elastic strain. These extraordinary mechanical properties, however, can be affected by the presence of defects in their structures. When a material contains multiple defects, it is expected that the stress concentration of them superposes if the separation distances of the defects are low, which causes a more reduction of the strength. On the other hand, it is believed that if the defects are far enough such that their affected areas are distinct, their behavior is similar to a material with single defect. In this article, molecular dynamics (MD) is used to explore the influence of separation distance of double vacancy defects on the mechanical properties of single-layered graphene sheets (SLGSs). To this end, critical stress and strain of SLGSs containing double vacancy with different distances are determined and the results are compared with those of perfect SLGSs and graphene sheets with single vacancy defect. The results reveal that the ultimate strength of the SLGS with double vacancy tends to the one with a single vacancy when the separation distance becomes further. In this regard, the threshold distance beyond which double defects behave like a single one is examined. Finally, Young’s modulus of perfect, single and double vacancy defected graphene sheets with different separation distances is determined. It is concluded that this property is slightly affected by the separation distance.  相似文献   

12.
This paper suggests a 3D finite element method based on the modal theory in order to analyse linear periodically time-varying systems. Presentation of the method is given through the particular case of asymmetric rotating machines. First, Hill governing equations of asymmetric rotating oscillators with two degrees of freedom are investigated. These differential equations with periodic coefficients are solved with classic Floquet theory leading to parametric quasimodes. These mathematical entities are found to have the same fundamental properties as classic eigenmodes, but contain several harmonics possibly responsible for parametric instabilities. Extension to the vibration analysis (stability, frequency spectrum) of asymmetric rotating machines with multiple degrees of freedom is achieved with a fully 3D finite element model including stator and rotor coupling. Due to Hill expansion, the usual degrees of freedom are duplicated and associated with the relevant harmonic of the Floquet solutions in the frequency domain. Parametric quasimodes as well as steady-state response of the whole system are ingeniously computed with a component-mode synthesis method. Finally, experimental investigations are performed on a test rig composed of an asymmetric rotor running on nonisotropic supports. Numerical and experimental results are compared to highlight the potential of the numerical method.  相似文献   

13.
A Timoshenko beam finite element is presented which has three nodes and two degrees of freedom per node, namely the values of the lateral deflection and the cross-sectional rotation. The element properties are based on a coupled displacement field; the lateral deflection is interpolated as a quintic polynomial function and the cross-sectional rotation is linked to the deflection by specifying satisfaction of the governing differential equation of moment equilibrium in the absence of the rotary inertia term. Numerical results confirm that this procedure does not preclude convergence to true Timoshenko theory solutions since rotary inertia is included in lumped form at element ends. The new Timoshenko beam element has good convergence characteristics and where comparison can be made in numerical studies it is shown to be generally more efficient than previous elements.  相似文献   

14.
《Current Applied Physics》2014,14(4):533-537
The molecular dynamic simulation is performed to study the wrinkling behavior of a graphene sheet with a hole subjected to a shear loading at different temperatures. Wrinkling is inevitable under pure shear loading. Four different hole diameters of 0, 0.8, 1.6, and 3.2 nm are chosen in this simulation. The results show that the number of ridges increases with an increase of the width of the graphene sheet. The shear stress induced in the defective graphene sheet increases with increasing temperature. In addition, the shear modulus of the defective graphene sheet also increases with an increase of temperature.  相似文献   

15.
16.
Hui-Shen Shen 《Physics letters. A》2010,374(39):4030-4039
A nonlocal shear deformable shell model is developed for buckling of microtubules embedded in an elastic matrix of cytoplasm under bending in thermal environments. The results reveal that the lateral constraint has a significant effect on the buckling moments of a microtubule when the foundation stiffness is sufficiently large.  相似文献   

17.
A series of graphene sheets (GS)-based multilayer films was constructed in virtue of layer-by-layer electrostatic self-assembly technique based on the negatively charged poly(sodium 4-styrenesulfonate) (PSS) mediated GS (PSS-GS) and the positively charged polyethyleneimine (PEI). High-resolution transmission electron microscope, atomic force microscope and micro-Raman spectrum characterizations demonstrated that the PSS-GS has been synthesized and could be assembled on the single-crystal silicon substrate. Ellipsometric thickness measurement and ultraviolet-visible absorption spectroscope confirmed the successive assemblies of GS. Finally, the macrotribological behaviors of different multilayer films were evaluated on a ball-on-plate macrotribometer and the results indicated that the prepared three- and five-layer films had high load affording ability and long anti-wear life, which could be highly dependent upon the high coverage and excellent self-lubricant properties that the GS owns intrinsically.  相似文献   

18.
This paper developed a finite element method to perform the maglev train–bridge–soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton–Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.  相似文献   

19.
The coupled vibration modes of a rotating blade-disc system are calculated by a finite element method. It is assumed that a large number of identical blades are present, such that the resulting blade loadings on the disc can be considered continuously distributed around the rim of the disc. The disc may have arbitrary profile, and the blades may be tapered and twisted, thus closely representing practical axial flow turbomachine configurations. The effects of rotation, thermal stress, and transverse shear and rotatory inertia in discs of moderately thick profile are readily incorporated into the finite element model. Calculated values of frequencies are compared with experimental data obtained on non-rotating models, and the convergence of the solution is examined by comparison with exact solutions, which can be obtained for configurations of simple geometry. Excellent agreement with experimental data is obtained when using remarkably few elements in the mathematical model, and convergence of the solution is extremely rapid.  相似文献   

20.
Sound insulation prediction models in European and International Standards use the vibration reduction index to calculate flanking transmission across junctions of walls and floors. These standards contain empirical relationships between the ratio of mass per unit areas for the walls/floors that form the junction and a frequency-independent vibration reduction index. However, calculations using wave theory show that there is a stronger relationship between the ratio of characteristic moment impedances and the transmission loss from which the vibration reduction index can subsequently be calculated. In addition, the assumption of frequency-independent vibration reduction indices has been shown to be incorrect due to in-plane wave generation at the junction. Therefore numerical experiments with FEM, SFEM and wave theory have been used to develop new regression curves between these variables for the low-, mid- and high-frequency ranges. The junctions considered were L-, T- and X-junctions formed from heavyweight walls and floors. These new relationships have been implemented in the prediction models and they tend to improve the agreement between the measured and predicted airborne and impact sound insulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号