首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Lewis base catalyzed aldol reaction of trimethylsilyl enolates with aldehydes is established in DMF or pyridine solvent by using a Lewis base such as lithium diphenylamide (Tables 4 and 5) or lithium 2‐pyrrolidone (Tables 68). The effect of solvent suggests that this reaction proceeds via the pentacoordinated hypervalent silicate generated by the coordination of the above Lewis base to a trimethylsilyl enolate. Successive coordination of the solvent to the thus‐formed pentacoordinated silicate leads to an active enolate intermediate having hexacoordinated silicate, which, in turn, attacks carbonyl compounds to form the desired aldols (Scheme 5).  相似文献   

2.
The PdII‐catalyzed dehydroboration of boron enolates generated from ketones and 9‐iodo‐9‐borabicyclo[3.3.1]nonane was achieved, providing a synthetically versatile protocol from ketones to α,β‐unsaturated ketones. The PdII compound employed in this reaction worked catalytically in the presence of Cu(OAc)2. The high trans‐selectivity of the olefinic moiety was observed. Aryl halide moieties (‐Br and ‐Cl) remained intact for this reaction in spite of the presence of a Pd species. An ester substrate could also be applied when a stoichiometric amount of PdII was used. The crossover reactions using boron and silyl enolates revealed that the oxidation reaction is much faster than the Saegusa‐Ito reaction.  相似文献   

3.
Density functional theory and Car–Parrinello molecular dynamics simulations have been carried out for model aldol reactions involving aggregates of lithium enolates derived from acetaldehyde and acetone. Formaldehyde and acetone have been used as electrophiles. It is found that the geometries of the enolate aggregates are in general determined by the most favorable arrangements of the point charges within the respective LinOn clusters. The reactivity of the enolates follows the sequence monomer?dimer>tetramer. In lithium aggregates, the initially formed aldol adducts must rearrange to form more stable structures in which the enolate and alkoxide oxygen atoms are within the respective LinOn clusters. Positive cooperative effects, similar to allosteric effects found in several proteins, are found for the successive aldol reactions in aggregates. The corresponding transition structures show in general sofa geometries.  相似文献   

4.
The highly efficient electrophilic cyanation of boron enolates using readily available cyanating reagents, N‐cyano‐N‐phenyl‐p‐toluenesulfonamide (NCTS) and p‐toluenesulfonyl cyanide (TsCN), is reported. Various β‐ketonitriles were prepared by this new protocol, which has a remarkably broad substrate scope compared to existing methods. The present method also allowed efficient synthesis of β‐ketonitriles containing a quaternary α‐carbon center. In addition, a preliminary result with the use of a chiral boron enolate for the enantioselective cyanation reaction is described.  相似文献   

5.
Herein, we report a unique structural property of 2,4,6‐tri‐tert‐butylanilide, which can be separated into its amide rotamers at room temperature. Interconversion between the rotamers of anilide enolates occurs readily at room temperature and their reaction with electrophiles gives mixtures of the rotamers in a ratio that depends on the reactivity of the corresponding electrophile. That is, the reaction of the 2,4,6‐tri‐tert‐butylacetanilide enolate with reactive electrophiles, such as allyl bromide or protic acids, gives mixtures of the anilide rotamers in which the E rotamer is the major component, whereas less‐reactive electrophiles, such as 1‐bromopropane and 2‐iodopropane, yield mixtures of the rotamers in which the Z rotamer is the major component. The rotameric ratio of the product is also strongly dependent on the reactivity of the anilide enolate. Switching between the anilide rotamers can be achieved through protonation of a less‐reactive enolate by a less‐reactive protic acid and thermal isomerization of the anilide.  相似文献   

6.
An unprecedented stereoselective synthesis of trisubstituted vinylboronates is reported to proceed by direct borylation of lithium ketone enolates under transition‐metal‐free conditions. The stereospecific C?O borylation of lithium enolates was triggered by a carbonyl‐induced 1,3‐metalate rearrangement via a C‐bound boron enolate. DFT calculations and control experiments revealed that the stereoselectivity is controlled by sterics. A variety of stereospecific trisubstituted vinylboronates, together with several tetrasubstituted vinylboronates, were conveniently synthesized with the newly developed methodology. Based on the transformation of stereospecific vinylboronate, a single isomer of Dienestrol was efficiently obtained.  相似文献   

7.
This article describes the generation of chiral palladium enolates and their application to several kinds of catalytic asymmetric reactions. Two methods to generate chiral enolates were developed using novel cationic palladium complexes 1 and 2 . In these processes, water or a hydroxo ligand on palladium metal plays an important role as a nucleophile to promote the transmetallation or as a Brønsted base to abstract an acidic α‐proton of the carbonyl group. These enolates showed sufficient reactivity with various electrophiles. Using a chiral Pd enolate as a key intermediate, highly enantioselective reactions such as catalytic aldol reactions, Mannich‐type reactions, Michael reactions, and fluorination reactions were developed. The unique structures of the palladium enolate complexes were elucidated and reaction mechanisms are proposed. © 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 231–242; 2004: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20017  相似文献   

8.
Over the recent decades, due to the special electronic characteristics and diverse reactivities, N-heterocyclic carbene (NHC) has received significant interest in organocatalyzed reactions. The formation of Breslow intermediates by NHC can convert into acyl anion equivalent, enolates, homoenolate, acyl azolium, and vinyl enolate etc., and the cycloaddition reactions of these species has attracted lots of attention. In this review, we focus on the summry of the development of NHC-activation of carbonyl carbon (or imine carbon) in situ, α-, β-, γ-, and beyond, and the cycloaddition reaction of these species.  相似文献   

9.
Abstract

Lithium enolates of esters, amides, and an acylsilane undergo carbonylation with carbon monoxide with the aid of selenium under mild conditions to yield the corresponding selenol esters after trapping with alkyl iodides.  相似文献   

10.
Seema Kanwar 《合成通讯》2013,43(16):2149-2155
Abstract

α‐Cyano and α‐chloro β‐lactams are obtained in a one‐step reaction at a temperature of less than ?78°C by condensation of imines with ester enolates derived from ethyl α‐cyano and α‐chloro acetates.  相似文献   

11.
The treatment of various N‐morpholino amides with TMPZnCl⋅LiCl (TMP=2,2,6,6‐tetramethylpiperidyl) and Mg(OPiv)2 in THF at 25 °C provides solid zinc enolates with enhanced air and moisture stability (t 1/2 in air: 1–3 h) after solvent evaporation. These enolates undergo Pd‐ and Cu‐catalyzed cross‐couplings with (hetero)aryl bromides as well as allylic and benzylic halides. The arylated N‐morpholino amides were converted into various ketones by LaCl3⋅2 LiCl mediated acylation with Grignard reagents. The new, solid enolates were used to prepare a potent anti‐breast‐cancer drug candidate in six steps and 23 % overall yield.  相似文献   

12.
A highly efficient and straightforward aminoxylation of titanium(IV) enolates from (S)‐N‐acyl‐4‐benzyl‐5,5‐dimethyl‐1,3‐oxazolidin‐2‐ones with TEMPO has been developed. A wide array of functional groups on the acyl moiety, including alkyl and aryl substituents, olefins, esters, or α‐cyclopropyl, as well as α‐trifluoromethyl groups, are well tolerated. This transformation can therefore produce the α‐aminoxylated adducts in excellent yields with high diastereomeric ratios (d.r.). In turn, parallel additions to the α,β‐unsaturated N‐acyl counterparts give the corresponding γ‐adducts with complete regioselectivity in moderate to good yields. Removal of the piperidinyl moiety or the chiral auxiliary converts the resultant adducts into enantiomerically pure α‐hydroxy carboxyl derivatives, alcohols, or esters in high yields under mild conditions. Finally, a new mechanistic model based on the biradical character of the titanium(IV) enolates has been proposed.  相似文献   

13.
β‐Lactams with contiguous tetra‐ and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4‐exo‐trig cyclization of axially chiral enolates generated from readily available α‐amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β‐lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β‐lactam enolates thus formed through reversible intramolecular conjugate addition (4‐exo‐trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work‐up procedure) to give β‐lactams in up to 97 % ee.  相似文献   

14.
The palladium-catalyzed allylic alkylation of non-stabilized ketone enolates was thought for a long time to be not as efficient as the analogous reactions of stabilized enolates, e. g. of malonates and β-ketoesters. The field has experienced a rapid development during the last two decades, with a range of new, highly efficient protocols evolved. In this review, the early developments as well as current methods and applications of palladium-catalyzed ketone enolate allylations will be discussed.  相似文献   

15.
We report Ir‐catalyzed, enantioselective allylic substitution reactions of unstabilized silyl enolates derived from α,β‐unsaturated ketones. Asymmetric allylic substitution of a variety of allylic carbonates with silyl enolates gave allylated products in 62–94 % yield with 90–98 % ee and >20:1 branched‐to‐linear selectivity. The synthetic utility of this method was illustrated by the short synthesis of an anticancer agent, TEI‐9826.  相似文献   

16.
Treatment of optically active 1-chlorovinyl p-tolyl sulfoxides, which were synthesized from symmetrical ketones and (R)-(−)-chloromethyl p-tolyl sulfoxide in three steps, with lithium enolate of carboxylic acid tert-butyl esters gave optically active adducts having a substituent at the α-position with high 1,4-chiral induction from the sulfur chiral center in high yields. The adducts were converted to optically active esters and carboxylic acids having a chiral center at the α-position. When this addition reaction was carried out with the ester enolate generated from excess carboxylic acid tert-butyl ester with LDA in the presence of HMPA, the diastereomer of the adduct was obtained. By using the two reaction conditions for the generation of the ester enolates, a new method for asymmetric synthesis of both enantiomers of carboxylic acid derivatives having a substituent at the α-position from the one chiral source, (R)-(−)-chloromethyl p-tolyl sulfoxide, was realized.  相似文献   

17.
Carboxylate anions, dianions and ester enolates provide simultaneous protection and activation for directed carbometalation reactions. Advantage can be taken of the bis‐carbanionic character of the intermediate for further controlled C?C bond forming reactions.  相似文献   

18.
Dysidavarone A, a structurally unprecedented sesquiterpenoid quinone, was synthesized in 30 % overall yield in a longest liner sequence of 13 steps from commercially available o‐vanillin. A highly strained and bridged eight‐membered carbocyclic core was established by the C7?C21 carbon bond formation through a copper enolate mediated Michael addition to the internal quinone ring.  相似文献   

19.
The structures of cyclopentanone lithium enolate under HMPA titration in 0.04-0.8 M diethyl ether and dimethyl ether solvents have been investigated using the low-temperature 7Li, 31P, and 13C NMR. The progressive solvation by HMPA occurs for the tetra- and dimeric enolates, and upon addition of >2 equiv. of HMPA, the lithium enolate has been converged on a mixture of tetra-HMPA coordinated tetramer and bis-HMPA coordinated dimer with the ratio of 5:95 and <1:99 in diethyl ether and dimethyl ether, respectively. Neither monomeric nor trimeric enolate is detectable under such HMPA titration.  相似文献   

20.
Oxidative coupling of phenylacetic acid esters was easily achieved by treating the esters with TiCl(4) and then adding Et(3)N to the resulting solution. The products consisted of dl- and meso-2,3-diphenylsuccinic acid esters with the Claisen condensation product, and the ratio of these products depended on the reaction conditions. Reaction conditions suitable for high dl selectivity were determined, and a dimer of titanium enolate was postulated as an intermediate responsible for the high dl selectivity. The selectivities were compared with those in known oxidative couplings in which titanium enolate intermediates are prepared through lithium enolates and silyl enol ethers. The results suggest that the reactivities of titanium enolates intermediates depend on how they are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号