首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Herein, we describe the first structural characterization of N‐alkylated twisted amides prepared directly by N‐alkylation of the corresponding non‐planar lactams. This study provides the first experimental evidence that N‐alkylation results in a dramatic increase of non‐planarity around the amide N?C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O‐Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N?C(O) moiety of N‐alkylated amides, indicating the lack of nN to π*C=O conjugation. Most crucially, we demonstrate that N‐alkylation activates the otherwise unreactive amide bond towards σ N?C cleavage by switchable coordination.  相似文献   

2.
The amide bond N?C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N?C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C?C, C?N, C?O and C?S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.  相似文献   

3.
A dual C?H/N?H dehydrogenative coupling of quinoline‐type N‐oxides with sulfoximines that leads to N‐(hetero)arylsulfoximines in high yields has been realized by using a catalytic amount of CuBr in air. The method does not require any additional ligand, base, reactivity modifier or oxidant and provides a practical route towards a series of sulfoximidoyl‐functionalized quinolines and derivatives.  相似文献   

4.
5.
A nitroxyl‐radical‐catalyzed oxidative coupling reaction between amines with an N‐protecting electron‐withdrawing group (EWG) and silylated nucleophiles was developed to furnish coupling products in high yields, thus opening up new frontiers in organocatalyzed reactions. This reaction proceeded through the activation of N‐halogenated amides by a nitroxyl‐radical catalyst, followed by carbon–carbon coupling with silylated nucleophiles. Studies of the reaction mechanism indicated that the nitroxyl radical activates N‐halogenated amides, which are generated from N‐EWG‐protected amides and a halogenation reagent, to give the corresponding imines.  相似文献   

6.
The amide functional group is commonly found in peptides, proteins, pharmaceutical compounds, natural products, and polymers. The synthesis of amides is typically performed by using classical approaches that involve the reaction between a carboxylic acid and an amine in the presence of an activator. Amides are thought to be an inert functional group, because they are unsusceptible to nucleophile attack, owing to their low electrophilicity. The reason for this resistance is clear: the resonance stability of the amide bond. However, transition metal catalysis can circumvent this stability by selectively rupturing the N?C bond of the amide, thereby facilitating further cross‐coupling or other reactions. In this Focus Review, we discuss the recent advances in this area and present a summary of methods that have been developed for activating the amide N?C bond by using precious and non‐precious metals.  相似文献   

7.
The first electrochemical dehydrogenative C−C cross‐coupling of thiophenes with phenols has been realized. This sustainable and very simple to perform anodic coupling reaction enables access to two classes of compounds of significant interest. The scope for electrochemical C−H‐activating cross‐coupling reactions was expanded to sulfur heterocycles. Previously, only various benzoid aromatic systems could be converted, while the application of heterocycles was not successful in the electrochemical C−H‐activating cross‐coupling reaction. Here, reagent‐ and metal‐free reaction conditions offer a sustainable electrochemical pathway that provides an attractive synthetic method to a broad variety of bi‐ and terarylic products based on thiophenes and phenols. This method is easy to conduct in an undivided cell, is scalable, and is inherently safe. The resulting products offer applications in electronic materials or as [OSO]2− pincer‐type ligands.  相似文献   

8.
The first Negishi cross‐coupling of amides for the synthesis of versatile diaryl ketones by selective C?N bond activation under exceedingly mild conditions is reported. The cross‐coupling was accomplished with bench‐stable, inexpensive precatalyst [Ni(PPh3)2Cl2] that shows high functional‐group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N?C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional‐group tolerance of organozinc reagents, this strategy provides a new platform for amide N?C bond/organozinc cross‐coupling under mild conditions.  相似文献   

9.
Starting from Ph3SiH, the barium precatalyst Ba[CH(SiMe3)2]2?(THF)3 was used to produce the disilazane Ph3SiN(Bn)SiPh2NHBn ( 4 ) by sequential N?H/H?Si dehydrogenative couplings with BnNH2 and Ph2SiH2. Substrate scope was extended to other amines and hydrosilanes. This smooth protocol gives quantitative yields and full chemoselectivity. Compound 4 and the intermediates Ph3SiNHBn and Ph3SiN(Bn)SiHPh2 were structurally characterised. Further attempts at chain extension by dehydrocoupling of Ph2SiH2 with 4 instead resulted in cyclisation of this compound, forming the cyclodisilazane c‐(Ph2Si‐NBn)2 ( 5 ) which was crystallographically authenticated. The ring‐closure mechanism leading to 5 upon release of C6H6 was determined by complementary experimental and theoretical (DFT) investigations. Ba[CH(SiMe3)2]2?(THF)3 and 4 react to afford the reactive Ba{N(Bn)SiPh2N(Bn)SiPh3}2, which was characterised in situ by NMR spectroscopy. Next, in a stepwise process, intramolecular nucleophilic attack of the metal‐bound amide on the terminal silicon atom generates a five‐coordinate silicate. It is followed by turnover‐limiting β‐C6H5 transfer to barium; this releases 5 and forms a transient [Ba]?Ph species, which undergoes aminolysis to regenerate [Ba]?N(Bn)SiPh2N(Bn)SiPh3. DFT computations reveal that the irreversible production of 5 through such a stepwise ring‐closure mechanism is much more kinetically facile (ΔG=26.2 kcal mol?1) than an alternative σ‐metathesis pathway (ΔG=48.2 kcal mol?1).  相似文献   

10.
The dehydrogenative cross‐coupling of aniline derivatives to 2,2′‐diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared. The best results were obtained when glassy carbon was used as the anode material. The electrosynthetic reaction is easily performed in an undivided cell at slightly elevated temperature. In addition, common amine protecting groups based on carboxylic acids were employed that can be selectively removed under mild conditions after the cross‐coupling, which provides quick and efficient access to important building blocks featuring free amine moieties.  相似文献   

11.
The first Ni‐catalyzed Suzuki–Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N?C amide bond activation is reported. The reaction tolerates a wide range of electron‐withdrawing, electron‐neutral, and electron‐donating substituents on both coupling partners. The reaction constitutes the first example of the Ni‐catalyzed generation of aryl electrophiles from bench‐stable amides with potential applications for a broad range of organometallic reactions.  相似文献   

12.
A new class of Weinreb amides has been developed as directing groups for the ruthenium‐catalysed regioselective oxidative C?H olefination. The new Weinreb amides successfully inhibit the N?O bond reductive cleavage usually associated with the cationic ruthenium system, thereby keeping intact the synthetic utility of Weinreb amides. Mechanistic studies reveal interesting aspects of the directing group capabilities of Weinreb amides when compared to simple amides of similar structures.  相似文献   

13.
Metal‐catalyzed reactions of amides proceeding via metal insertion into the N? CO bond are severely underdeveloped due to resonance stabilization of the amide bond. Herein we report the first Heck reaction of amides proceeding via highly chemoselective N? CO cleavage catalyzed by Pd0 utilizing amide bond ground‐state destabilization. Conceptually, this transformation provides access to a myriad of metal‐catalyzed transformations of amides via metal insertion/decarbonylation.  相似文献   

14.
An iridium‐catalyzed C?H amination of arenes with a wide substrate scope is reported. Benzamides with electron‐donating and ‐withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention.  相似文献   

15.
A selective, nonchelation‐assisted methylation of arenes has been developed. The overall transformation, which combines a C?H functionalization reaction with a nickel‐catalyzed cross‐coupling, offers rapid access to methylated arenes with high para selectivity. The reaction is amenable to late‐stage methylation of small‐molecule pharmaceuticals.  相似文献   

16.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

17.
In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C?O bond‐cleaving alkylation, for the first time without the limiting β‐hydride elimination. This new nickel‐catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.  相似文献   

18.
A mild method for the direct C?H/N?H coupling between γ‐lactams and anilines through electrochemical oxidation has been developed. The protocol proceeded smoothly without metal catalysts at room temperature to afford γ‐substituted γlactams in good yields. It has been revealed that the quasi‐divided cell which provided high current density on the anode was crucial for this reaction.  相似文献   

19.
《化学:亚洲杂志》2017,12(3):289-292
A rhodium‐catalyzed regioselective C−H olefination of indazole is described. This protocol relies on the use of an efficient and removable N ,N ‐diisopropylcarbamoyl directing group, which offers facile access to C7‐olefinated indazoles with high regioselectivity, ample substrate scope and broad functional group tolerance.  相似文献   

20.
By making use of a dual‐chelation‐assisted strategy, a completely regiocontrolled oxidative C?H/C?H cross‐coupling reaction between an N‐acylaniline and a benzamide has been accomplished for the first time. This process constitutes a step‐economic and highly efficient pathway to 2‐amino‐2′‐carboxybiaryl scaffolds from readily available substrates. A Cp*‐free RhCl3/TFA catalytic system was developed to replace the [Cp*RhCl2]2/AgSbF6 system generally used in oxidative C?H/C?H cross‐coupling reactions between two (hetero)arenes (Cp*=pentamethylcyclopentadienyl, TFA=trifluoroacetic acid). The RhCl3/TFA system avoids the use of the expensive Cp* ligand and AgSbF6. As an illustrative example, the procedure developed herein greatly streamlines the total synthesis of the naturally occurring benzo[c]phenanthridine alkaloid oxynitidine, which was accomplished in excellent overall yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号